o MMC FIE CopY
NAVAL POSTGRADUATE SCHOOL

Monterey, California

AD-A200 227

THESIS

A MICROPROCESSOR-BASED, SOLAR CELL
PARAMETER MEASUREMENT SYSTEM

by
Robert R. Oxborrow
Junec 1988

Thesis Advisor Sherif Michael

Approved for public release; distribution is unlimited.

Unclassified

seCUriy coassiizanon of this paze

REPORT DOCUMENTATION PAGE

la Repert Securnty Classiivatan Unclassified I'h Resiricune Markings
2a Secunity Classification Authornm 3 D-sinibutton Avanabiity of Report
2% Declassificaton Dowreracing: Scneduie Approved for public release: distnbution is unlimited.
< Perferminz Organization Report \umber(s) S Mentoning Organization Report Numberes)
ca Name of Perrorming Organizauon ob Office Symbol “a Name of Monitoring Organizauon
Naval Postgraduate School (if appiicable’ 39 Naval Postgraduate School
nc ACGress (o, State. and ZI1P code) 7b Address (city. state. and ZIP code)
Monterey. CA 93943-3000 Monterey, CA 93943-3000
%2 Name of Funding Sponsoring Organizauon | 8b Office Symbol 9 Procurement Instrument Jdenufication Number

(if appiicable)
Sc Address i city, state. and ZIP code) 10 Scurce of Funding Numbers

" Program Eiemen: No rPi'bTecf\,\o l'lask ,\oj Work L nit Accession \o

11 Tale (include security classificarion) A MICROPROCESSOR-BASED, SOLAR CELL PARAMETER MEASUREMENT
SYSTEM

12 Persona! Autheris: Robert R. Oxborrow /f
13a Type of Report 13b Time Coverya 14 Date of Report (year, month, day) 15 Page Count
Master's Thesis From /To June 1988 a(

16 Suppiementary Noiation 1he views express;ﬂ in this thesis are those of the author and do not reflect the official policy or po-

sitign of the Department of Defense or tiie A.S. Government.

17 Cosau Codss 1% SLHQ(Terms (continue on reverse {f nccessary gng.identify by blociz numboer)
Fleld Group sutcroun | Solar Cells, Space Measurement. H—G&r% ‘es, Autonomous Control) ‘f’h o

1R ’“'ft“ 1é.,—

19 .-\'hract 1 CONLINUE ¢ FEVErse it necessary and identifv by block number

The eftects of the space environment on solar cells has, to date. been largely modeled and approximated in the design of
solar arrays. Restrictions such as weight and cost have precluded direct analysis of the long term effects of radiation in space.
At the Naval Postgraduate School (NPS). a simple circuit has been devised which facilitates in situ data collection and analysis
of these effects. The circuit includes an op-amp and a high beta transistor for cell voltage biasing. When coupied 10 a
microprocessor-based controller system. this circuit has the capability to measure and store data pertaining to solar cell per-
formance I-V curves. The complete system consists of an NSC 800 microprocessor. D A and A D components, analog
multipiexers and demultiplexers, biasing transistors and op-amps. This design provides a compact, low power, accurate
method for I-V measurement and data storage. Such a svstem may be used to observe and monitor an array of test cells and
their performance degradation in both the space environment and terrestrial applications.

20 Distribution Availabiinty of Abstract 21 Abstract Security Classification

& undclassifed unhrmited O same as repart O DTIC users Unclassified

222 Name of Responsibie Indivigual 22b Telephone rinclude Area code) 22¢ Ofice Symbol

Shenf Michael (408 646-2252 62\Mi

DD FORM 1473.83 MAR 83 APR edition may be used unul exhausted security classificauon of this page

All other editions are obsolete

Unclassified

Approved for public release; distribution is unlimited.

-. A Microprocessor-Based, Solar Cell
4 Parameter Mcasurement System

by

P

‘ Robert R. Oxborrow
- Lieutenant, United States Navy
B.S., United States Naval Academy, 1980

] Submitted in partial fulfillment of the
I. requirements for the degree of

MASTER OF SCIENCE, ELECTRICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
1988, June 06

Author: fm %

-
Robert R. Oxborrow

Approved by: S\wvif /Z/cégzé

Sherif Michael, Thesis Advisor

R. Panholzer, Second&g:r'“
P e

™ John P. Powers, Chairman,
Department of Electrical and Computer Engineering

M&L—/

Gordon E. Schacher,
Dean of Science and Engineering

ABSTRACT

The effects of the space environment on solar cells has, to date, been largely modeled
and approximated in the design of solar arrays. Restrictions such as weight and cost
have precluded direct analysis of the long term effects of radiation in space. At the
Naval Postgraduate School (NPS), a simple circuit has been devised which facilitates in
situ data collection and analysis of these effects. The circuit includes an op-amp and a
high beta transistor for cell voltage biasing. When coupled to a microprocessor-based
controller system, this circuit has the capability to measure and store data pertaining to
solar cell performance I-V curves. The complete system consists of an NSC 800 micro-
processor, D A and A'D components, analog multiplexers and demultiplexers, biasing
transistors and op-amps. This design provides a compact, low power, accurate method
for I-V measurement and data storage. Such a system may be used to observe and
monitor an array of test cells and their performance degradation in both the spacc cn-
vironment and terrestrial applications.

Accegsion For

NTIS GRAXI
DTIEC TAB
Unapnouneed O

o i
s

BY e

Justifieation — o
e o)

Availability COQ??‘“~J

\)mribﬂt_iee/._w-

#V}Aihilnnﬁd/or
IDist Spocial

i

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not
have been exercised for all cases of interest. While every effort has been made. within
the time available, to ensure that the programs are free of computational and logic er-
rors, they cannot be considered validated. Any application of these programs without
additional verification is at the risk of the user.

iv

O
t. TABLE OF CONTENTS
L INTRODUCTION 1
A. THE UBIQUITOUS SOLARCELL 1
B. SOLAR CELL POWER e 2
C. SOLAR CELL CALIBRATION e 3
D. HIGH-ALTITUDE BALLOON CALIBRATION 5
E. RADIATIC 6
F.o INSITU TESIING o e e e 8
G. THE MICROPROCESSOR-BASED TEST SYSTEM 10
II. ANOVEL SOLARCELLTESTDEVICE I
A, APPLICATION 11
B. TEST CIRCUIT REQUIREMENTS e 11
C. DESIGN 12
. MICROPROCESSOR CONTROLLER 15
A, SYSTEM DESIGN o 13
B. CONTROLLER COMPONENTS 16
I NSCS800 Microprocessor ...t e e e e 16
2. NSCSI0A RAM-T O-Timer e 16
3. IMO6402 Universal Asvnchronous Receiver Transmitter (CART) 16
4. MMS8167 Real Time Clock .o it 16
S MeEemMoOrY L e e 17
a. EPROM .. 17
b. Bubble Memory 17
C. RAM e 17
IV. SOLAR CELL ARRAY TEST CIRCUIT i, 19
A, OVERVIEW e 19
B. COMPONENTS e e e e 19
1. DACO800 8-bit Digital-to-Analog Converter 19
2. HI-506A Analog Multiplexero oo 19

\Y

3
C
. 3. ADCO0809 A'D Converter and Multiplexer 19
: C. DIGITAL-TO-ANALOG CONVERSION AND DEMULTIPLEXING .. 20
m D. ANALOG TO DIGITAL CONVERSION AND MULTIPLEXING 20
E. INTERFACE i 20
. V. SOFTWARE ... 23
A. CONTROLLERROUTINESo 23
B. SOLAR CELLARRAY ROUTINE 25
VI. TESTAND RESULTS ... e 29
A TEST e 29
B. RESULTS ..o e i e 29
VII. CONCLUSIONS . e 3$

APPENDIX A, NPS MICROPROCESSOR CONTROLLER SCHEMATIC ... 36

APPENDIX B. CONTROLLER START-UP AND OPERATING CODE 39
A, FILENAME SOLAREVAH e 39
B. FILENAME SOLARH J1
C. FILENAME INITIALH ... i 41
D. FILENAME CONVERTH i, 41
E. FILENAME GLOBAL.H 41
F.O FILENAME INOUTH . . e e e 42
G. FILENAMEDELAY.H ... s 32
H. FILENAME NEWIOH 42
[. FILENAMECLOCK.H i 42
J. FILENAME INITIAL.C .. e e 43
K. FILENAME SOLAR.C e 44
L. FILENAME CONVERT.C 46
M. FILENAME INOUT.C s 50
N, FILENAME NEWIO.S .. e 54
O. FILENAME START.S .. i e 55
P. FILENAME GLOBAL.C i 38

vi

s ——

T 1
4

Q. FILENAME CLOCK.C 59

R. FILENAME DELAY.S ... e 65

:‘ S. FILENAME SYMBOLS o 66

_ APPENDIX C. SOLAR CELL ARRAY TEST CIRCUITCODE 69

h A. FILENAME CELLTEST.C 69

APPENDIX D. SAMPLE SILICON SOLAR CELL TEST DATA 72

A. FILENAME SILICONDAT i 72

H LISTOF REFERENCES ... e i 74

BIBLIOGRAPHY .. e 77

[. INITIAL DISTRIBUTION LIST .. e e 78
L S

vii

o

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

® NSk WD -

9.

Figure 10

LIST OF FIGURES

Typical p-n junction diode I-V curve. 3
LIPS-1I satellite and GaAs solar cell panel. 9
Novel solar cell biasing circuit. i e 13
Solar cell array test circuit schematic. vinn..n 21
‘Execute’ routine flow diagram., 26
‘Retrieve’ routine flow diagram. 28
Sample 1, silicon solarcell -V curves. 31
Sample 2, silicon solar cell I-V curves. 32
Sample gallium-arsenide solar cell [-V curves. i3
. Practical versus ideal binary. fractional FSR transfer curve. 34

viii

ACKNOWLEDGMENTS

There are a number of people who have listened, offered advice, and provided as-
sistance in the completion of this project. However, there are a few of individuals
without whom this work would not have reached its present form.

First, I wish to thank Dr. Michael for his calm demeanor, despite my level of anx-
iety, his answers to many questions, his contribution to my understanding and learning,
and, of course, for the research money to build the project.

I thank Dave Rigmaiden for providing me with some of his energy, time and great
skills in microprocessor operation and application, and in the use of associated TTL and
CMOS hardware. Dave built and tested the version of controller used for the project.

I also thank Charlie Cameron for his patience, time, and vast knowledge of the 'C’
language, which he freely provided for my benefit in developing the solar cell array test
circuit. In addition, Charlie provided the microprocessor controller standup ana oper-
ating routines which were modified for use in this project.

Last, but not least, I wish to thank my wife, who understands, and always supports
my endeavors.

X

I. INTRODUCTION

A. THE UBIQUITOUS SOLAR CELL

The photovoltaic effect, upon which solar cells depend for their operation, was first
reported by Becquerel, in 1839. He observed a light-dependent voltage between two
electrodes immersed in an electrolyte. The effect was observed in the solid, selenium. in
1876. Photocells made of selenium and cuprous oxide were soon developed [Ref. I: p.2].
Bell Telephone Laboratories began theoretical research on the photovoltaic effect in the
1930’s. During the 1940’s experiments with silicon accelerated development of electrical
devices utilizing semiconductors. In 1954 the first practical solar cell was produced. The
major stumbling block in development of this cell was the production of pure silicon
crystal material. Breakthroughs by Czochralski in pure crystal growing and by Fuller
and Ditzenberger in high-temperature vapor diffusion to form p-n junctions brought
forth the necessary technology for successful semiconductor devices [Ref. 2: p.1.2-1).
The first cells were approximately 3 ¢m diameter circular wafers, resulting from the
maximum diameter crvstal that could be grown with existing technology. Conversion
efficiency was on the order of six to ten percent.

While the solar cell was first considered only for terrestrial applications, the advan-
tages of light weight, small size, and planar design destined this device to play a major
role in the operation of spacecraft, and indeed, this application was by far the major use
of the solar cell for over ten vears.

Vanguard I, launched on March 17, 1958, became the first solar powered earth sat-
ellite. The array consisted of six solar panels distributed around the satellite body, each
made of 18 p-n 2.0 x 0.5 cm cells. The system provided less than one watt of power, and
operated for over six vears in orbit [Ref. 2: p.1.1-1]. Since this austere beginning, solar
cell arrays have been a major source of power for a multitude of spacecraft and provided
them with from less than a watt to tens of kilowatts of operating power. As the power
requirements and complexity of spacecraft have increased, the development of solar cell
technology has kept pace. New materials, dopants, surface preparations, and hardware
have been developed. Understanding of the hazards of radiation from such sources as
the sun, Van Allen Belts, and deep space has prompted the introduction of new adhe-

sives, substrates, and coverglass materials.

-l

-

Can .

Throughout the 1960's emphasis was placed on increasing radiation resistance and

decreasing array weight and cost. For almost ten vears little progress was made in the
development of more efficient solar cells [Ref. 2: p.1.2-11. In the early 1970's new com-
pounds such as Gallium-Arsenide (GaAs), an optimized contact gridline system, front
surface texturing, and new anti-reflective coatings, such as tantalum pentoxide (Ta,0.),
introduced new “high efficiency” cells with conversion efficiencies of up to sixteen per-
cent [Ref. 2: p.1.2-2]. These developments, coupled with the search for new and better
energy sources, reawakened the interest in terrestrial applications for the solar cell [Ref.
1: p.2). A major concern in the development of these new cells and associated hardware
has been the testing and analysis of these devices” performance after prolonged exposure

to the space environment, and. to a lesser extent, the earth environment.

B. SOLAR CELL POWER

Solar cells are essentially large p-n diodes, and, as such, possess performance char-
acteristics that are most readily expressed in three parameters. These three parameters
are short-circuit current (l,.), open-circuit voltage (V). and fill factor (FF). In the ideal

case, [, would equal I, the light-generated current. V. mayv be defined bv:

s

c _ kT (1 -
Ve = n(Io+1) (1.1)

where k = Boltzmann’s Constant, @ = the charge of an electron, T = absolute temper-
ature, and [, represents the saturation current [Ref. 1: p.79]. The dependence of V., on
I, makes this voltage parameter also dependent upon the properties of the semiconduc-
tor from which the cell is manufactured. I, may vary with time for a given material; the
result of exposure to radiation, age, heat, etc.. Likewise, I, may vary with light intensity.
Fluctuation of these parameters produces varving voltage values which lie along a
characteristic I-V curve. As current through the diode, or cell, decreases from I, voltage
begins to increase, rapidly, at first, until [, approaches I,. As this occurs, voltage across
the p-n junction rapidly stabilizes at V,, as may be seen in Figure 1 on page 3. This
effect produces the characteristic knee on an I-V curve. The operating point which

maximizes the output power of the cell (v, I,,.) is found on this knee.

mp.y
FF, a measure of how “square” the output characteristics of the diode, or cel! are,
1s defined by

! l
Osrk [
&/
7
_—’/ Ve
—— o ere———— e T L]
/’] M
Veo |
|
I
T |
1 b/ tiuminated
;T '
.
S

Figure 1. Typical p-n junction diode I-V curve. Ref. 1: p.79

Vool

mp. ' mp.

v

'oclsc

FF = (1.2)

[Ref. 1: p.80]. Optimally. FF is a function of only ¥V, since I, is fixed for a given device.

The energy conversion efficiency of a solar cell, then, is

Vielmp, Vol oFF
Pin Pin

n= (1.3)
where P, is the total incident light power on the cell [Ref. 1: p.§1]. Maximum 5 occurs
at the maximum power point (P,,). Common commercial cell efficiencies are in the

range of 12 to 16 percent.

C. SOLAR CELL CALIBRATION

The calibration of solar cells to produce “standard” cells is necessary for two rea-
sons. First, to determine the absolute value of the solar constant over the spectral re-
sponse region of solar cells, and second, to accurately establish the light intensity of solar
simulators. Initial solar cell measurements were made outside, on a sunny day, with
volt-ohmmeters. pencil. and paper. These “fair weather™ tests were soon found inade-
quate for the accuracy desired in analysis and deficient in their consideration of the ef-
fects of the atmosphere on solar radiation.

Solar cells and array assemblies designed for spacecraft were tested under laboratory
conditions, illuminated by incandescent tungsten lamps. However, it was found that the

color temperature of these lumps, 2700-3400K, were much cooler than the sun, about

6000K, at air-mass-zero (AMO). Further, the spectral composition of the sun was
markedly different from that of the tungsten lamps, which contained large infrared
components. It was thought that water filters would aid in alleviating some of these
spectral problems, but these created even more problems and were abandoned. The
stability and rehability of tungsten lamps outweighed the spectral shortcomings of the
device through the 1960’s. Calibration of these lamps required closely controlled fila-
ment voltage to control color temperature, and intensity adjustiment by comparison with
specially calibrated solar cells. These cells were measured in natural sunlight with a
pyrheliometer, a thermopile designed specifically for measuring solar flux. Lamps cali-
brated with this scheme produced cells which were tested under “Standard Tungsten Test
Conditions” (unfiltered tungsten light of 2800K+ 350K, equivalent to 100 mW 'cm? solar
radiation at 28°C cell temperature). [Ref. 2: p.11.2-1]

Standard Tungsten Test Conditions were based upon the effect of natural sunlight
on solar cells under normal, but arbitrary outdoor conditions. “Standard” solar cells
were measured under light at any intensity, and the results extrapolated to 100 mW;
cm? Natural sunlight intensity was measured with standard meteorological equipment,
which suffered from some accuracy limitations. Cells were measured in collimated sun-
light, to eliminate the effects of sky background, or corrected by application of a cor-
rection factor based upon the ratio of short circuit currents of a cell measured in
uncollimated light to those measured in collimated light. Such cali >rated cells were used
as “standard” calibration devices for laboratory tungsten illuminators. [Ref. 2: p.11.2-1]

A number of problems and inaccuracies were readily appareat under this syvstem.
Natural sunlight conditions at test sites varied in both intensity and spectral content so
correlation from one day to the next was poor. The correlation between test sites was
worse. Standard cell calibration was then performed at the Smithsonian Institute Solar
Observatory, near Los Angeles, California, where data on sunlight conditions and
spectra had been collected for twenty-five years. The altitude of the site is 7516 ft, ad-
jacent to the Mohave Desert and characterized by relatively clear skies and low humid-
ities. After the improvement of outdoor illumination condition standards, the problems
of color temperature and tungsten sources were addressed through the use of color
temperature meters which were used for monitoring light and color temperature adjust-
ments in tungsten lamp voltages. [Ref. 2: p.11.2-1]

It was believed that this calibration methodology, more reproducible and accurate

than previous schemes, was sufficient to achieve adequate extrapolation of results to

AMO conditions. However, in 1961 it was discovered that efforts to improve solar cell
efTiciencies had significantly shifted spectral response toward the red. Cells and panels
measured under sources calibrated against standard cells were resulting in errors of 15
to 20 percent due to the different spectral responses between standards and new cells.
Government and industry began a test method standardization program which soon
solved some problem areas and defined others. New standard cells were developed and
the AIEE established a committee which prepared specifications for measurement of
solar cells using simulated solar radiation conditions. [Ref. 2: p.11.2-2]

Attempts were made to achieve the greatest possible accuracy in solar simulation
and standards throughout the 1960’s. High-altitude balloon flights seemed to have the
highest accuracy and became the definitive light intensity standard. The development
of solar simulators also progressed rapidly. However, the unavailability of space-
calibrated cells to verifv simulator performance degraded confidence in the accuracy of
these machines. The most widely used solar simulators for cell and array testing since
the late 1960's have been the X-25 series solar simulators developed by the Spectrolab
Division of Textron Electronics, Inc.. These simulators, and those developed since, use
high-power, high-pressure Xenon arc lamps. Smaller, continuously operating lamps
uniformly illuminate an area up to nearly 0.07 m?, illuminating single cells, while Large
Area Pulsed Solar Simulators (LAPSS), are used to test arrays up to 5 m?, permitting a
few mulliseconds of illumination by radiation closely matched to AMO conditions. [Ref.
2:p.11.2-1]

D. HIGH-ALTITUDE BALLOON CALIBRATION

Solar cells do not utilize all the energy available in the conversion of light energy to
electricity. Various elements of the solar spectrum are absorbed and reflected by the
specialized materials from which solar cells are made. Great effort has been expended
to produce solar simulators which simulate the intensity of the sun as well as its spec-
trum. Errors in either could result in an overweight array design for a given application,
or a system which would prematurely degrade and become power deficient.

The Jet Propulsion Laboratory (JPL) has been producing calibrated reference solar
cells through its solar cell calibration program for over twentv-four vears. This program
produces reference standard cells, with known I-V characteristics, for the purpose of
calibrating earth solar simulator intensities. Solar cells are flown on high-altitude bal-
loons to altitudes of approximately 120,000 ft (36,576 m), where I-V parameters, tem-
perature, and other data is collected. Flights at this altitude are estimated to be within

A

0.46 percent of AMO, determined by comparison of the ratio of atmospheric pressure
at altitude to that at sea level computed with the Air Research and Develpment Com-
mand (ARDC) model of the atmosphere. Helium-filled balloons are flown so as to reach
and remain at altitude from two hours before solar noon until two hours after solar
noon. The standard solar cell assemblies are mounted on a tracking system which
maintains orientation with the sun. Data is transmitted to a ground station during the
flight. Upon completion of tI 2 mission, a valve is remotely opened and the balloon be-
gins a controlled descent. The test array and equipment are recovered after landing.
This method of data collection benefits from the elimination of uncertainties and inac-
curacies in measurements, and minimization of corrections which must be made to data
taken at lower altitudes. Only two corrections are required with the high-altitude bal-
loon method of cell calibration, one for cell temperature and one for earth-sun distance.
Both of these factors are precisely known. Once the reference cell is placed in a simu-
lator, intensity adjustments must be made to match the simulator intensity to that ex-
perienced by the cell at altitude. Some cells have been reflown on subsequent flights for
correlation of previous data. Repeatability of within +1 percent was achieved, verifving
the accuracy and validity of previous reference data. [Ref. 2: p.11.3-1]

Until 1985 there had been some question as to the validity of balloon-calibrated
solar cells. There was still a question as to the effect atmosphere above the balloon had
on the solar radiation spectrum. If this effect was significant, this method of solar cell
calibration would not produce the desired accuracy in earth solar simulators. In the
summer of 19835, cells flown on a balloon were flown and tested on a space shuttle flight.
Comparison of the independent data from the two methods correlated to within one
percent [Ref. 3: p.542]. Thus, the high-altitude balloon method has proven to be an ac-
curate method for solar cell calibration. However, as new cells with new spectral char-

acteristics are developed, new standards are required.

E. RADIATION

There are a variety of variables that affect the performance of solar cells in the space
environment. Temperature, time, material composition and hardening mechanisms must
all be considered in the deployment of a solar array. However, the single greatest effect
on an array in space is radiation, which causes performance degradation during the life
of a satellite. Damaging radiation is composed of energetic or fast massive particles.
Such particles, electrons, protons, and neutrons, inhabit the space environment, in

varving densities, and at various times. Some radiation is a secondary effect of other

DDA ofl SiR
. @!

phenomena, such as Compton electrons, produced by gamma rays. The Van Allen Belts,
the Sun, and deep space are all sources of radiation. The mass, energy, and charge of
these particles, or associated particles, may interact with or damage solar cells in a
number of ways. The radiation phenomena of interest here are ionization and atomic
displacement. [Ref. 4: p.3-2]

[onization occurs when orbital electrons are removed from an atom or molecule.
Radiation may affect solar cell materials by several ionization-related effects. The
darkening of solar cell coverglasses is an example of one of these effects. lonizing radi-
ation excites orbital electrons which, upon entering the conduction band, become
trapped by impurity atoms, creating defect complexes within the material [Ref. 4: p.3-2].

A large fraction of energy is lost when fast electrons or protons collide with ab-
sorbing solar cell atoms. Silicon atoms are displaced from their lattice structure posi-
tions by these fast particles, causing permanent degrading damage. The displaced atoms
undergo other reactions and ultimately form stable defects which significantly modify
equilibrium carrier concentrations and minority carrier lifetimes.[Ref. 4: p.3-3]

It is possible to characterize solar cell damage in terms of changes in minority dif-
fusion length. This method has been widely used, but there are practical and fundamen-
tal limitations to this approach. Low energy protons, while causing considerable
displacement damage within the junction region of a solar cell, increasing I, and de-
creasing V,, do not change the cell diffusion length [Ref. 4: p.3-18]. In addition, accu-
rate measurement of cell output parameters is much less difficult than measurement of
diffusion length, particularly after proton irradiation. Empirical analysis has shown that
I, changes with a linear function of the logarithm of the fluence [Ref. 4: p.3-18]. The
variation of solar cell V. after irradiation has also been empirically related to a loga-
rithmic function. Thus, solar cell damage is generally reduced to the quantifiable
changes in I, V.., and maximum power.

The wide range of electron and proton energies present in space have necessitated
a method of describing the effects of various types of radiation environment which can
be reproduced in the laboratory., Damage equivalent radiation fluence was developed
to allow description of the degradation of unshielded silicon solar cells which had expe-
rienced 1 MeV electron irradiation under laboratory conditions, and reduce the effects
of the space radiation environment on a shielded silicon solar cell to a damage equivalent

fluence of 1 MeV electrons in the laboratory [Ref. 4: p.3-24].

Much data has been collected concerning the effects of 1 MeV electron irradiation
on solar cells. Particle acceleration, x and gamma radiation, etc. have been utilized and
carefully measured to define relative damage effectiveness on solar cells in an effort to
simulate with 1 MeV electron radiation, the state of damage that would be experienced
in the space environment by an equivalent fluence. This concept has also been extended
to the effects of proton irradiation, a more complex problem [Ref. 4: p.3-29]. The de-
gradation of solar cells irradiated with protons is more complex because of the nonuni-
form nature of the damage, particularly by those with energy below 3 MeV. DProton
damage is more severe than that of electrons, but can be normalized to the damage
produced by electrons. With this information, simulation of the space environment has
been almost the sole method through which solar cell parameter degradation is meas-

ured.

F. INSITU TESTING

Despite successes in simulating the space environment and the modeling of space
radiation, the degrading mechanisms which affect spacecraft are still not fully under-
stood. For example. recent research at the Naval Research Laboratory (NRL) indicates
that radiation dose rates can have as great or greater impact than overall radiation doses
on particular solar cell degradation processes [Ref. §}.

Rarely has the long term process and effects of space radiation been observed.
Simulations on Earth are relatively short, and the results analvzed after the fact. The
Navigation Technology Satellites 1 and 2 (NTS-1,2), were launched in support of the
NAVSTAR Global Positioning System (GPS) in 1977. The GPS program was con-
cerned with the development of high-efficiency solar cells sufficiently radiation resistant
to deliver adequate power throughout the mission lifetime of the GPS satellites. Exper-
imental solar cell arrays were on board NTS-1 and NTS-2. These arrays were composed
of Si and state-of-the-art GaAs solar cells which were to be evaluated for performance
and radiation resistance in the space environment. Information collected during the
mission was compared to pre-launch data. It was acknowledged in this experiment that
In situ observation was more valuable than simulation tests [Ref. 6: p.1234]. 1-V meas-
urements were taken on entire arrays and telemetered to a ground station. Individual
cell performance was not observed. This is an important point since the current output
of a string of cells is limited to that of the weakest cell in the string. Thus, a defective

or damaged cell will cause inaccurate conclusions based on resulting data.

S]

The Living Plume Shicld 11 (LIPS-1D), launched by the NRL in February, 1983,

carried three double-sided solar panels of S1 and GaAs cells. This was a cooperative

program by the U.S. Navy and Air Force to build, test, and qualify a GaAs solar panel
in space. The GaAs solar cells flown were mounted in three parallel strings of 100 celis.
Each string was 23 cells in series by d cells in parallel {Ref. 7: p.1108]. Figure 2 outlines

the satellite structure and the GaAs array.

Figure 2. LIPS-II satellite and GaAs solar cell panel. Ref. 7: p.1111

During the first 30 davs of operation of the satellite, a 7.3 percent power loss was expe-
rienced. These first 30 davs of operation were also unmonitored due to satellite orien-
tation problems. While the loss has never been explained, it is believed that the
mechanical failure of a solar cell or contact was the cause [Ref. 7: p.1109]. Had indi-
vidual cells, as well as an array, been tested, the question of this power loss might have
been resolved. Further, an autonomous data collection and storage system might also
have provided insight into that power loss.

Study of the effects of solar cell annecaling as a method of power recovery in de-
graded solar cells is an ongoing effort. However, complete analyvsis of such effects re-
quires exhaustive study due to the wide variations possible in temperature and annealing
rates, cell power recovery, recovery rates, and the effects these have on the various ma-
terials used in solar cell technology. Space environment tests would aid in the under-
standing and exploitation of this effect.

The Combined Release and Radiation Effects Satcllite (CRRES) Program is de-
signed to complete a variety of experiments, among which are the measurement of radi-

ation dose degradation effects in the space environment, and the update of static Earth

radiation belt models [Ref. 8: p.1]. A GaAs solar cell panel experiment on board
CRRES will measure the performance characteristics of diflerently configured solar cell
strings and simultaneously measure radiation species (protons, electrons, ions), their flux
levels, and energy distributions. Annealing processes and optimum configuration for
solar cell panels operating in a high radiation environment will be studied [Ref. 8: p.43].
This work will update existing static radiation belt models based on data collected in the
mud 1960’s which lacked information on ic \ species, and pitch angles. This new infor-
mation will also provide the basis for the first dynamic radiation belt models [Ref. 8:
p.6]. Information collected will be used to optimize solar cell panel design criteria in
consonance with space radiation measurements [Ref. 8: p.45]. This emphasis on in situ
testing and data collection is an indicator of the importance of this kind of information
to satellite designers and users.

Another application of in situ solar cell and array data is in the monitoring of P,
This 1s the designed operating point of a solar array. During the life of a spaceborne
array P, will shift, robbing the satellite of the maximum possible power available from
its solar array. Monitoring solar cell performance would provide the opportunity for
operational adjustment of the power svstem on a spacecraft, and more efliciently utilize
the remaining power production capabilitics of the system.

G. THE MICROPROCESSOR-BASED TEST SYSTEM

Previously, the testing, data collection, data storage, and telemetry of data from a
spacecraft to a ground station posed numerous problems. The weight and complexity
of required testing devices was limiting. Data storage and handling equipment was
bulky. Today, with modern digital techniques and microprocessor controlled devices.
these problems have been resolved. Indeed, the capability to collect more and more
complex information in space and transfer it to Earth has grown by orders of magnitude.
New technologies have miniaturized components to very small weight, volume, and
power parameters. The testing and monitoring of solar cells and arrays in space is now
a viable option, as has been demonstrated by programs such as those listed above.
Based on a simple electronic circuit, one microprocessor-based solar cell array test sys-
tem, for use in the space environment, is presented below.

10

II. ANOVEL SOLAR CELL TEST DEVICE

A. APPLICATION

Dr. Sherif Michael and Robert Callaway developed a simple circuit for the meas-
urement of a solar cell I-V curve at the Naval Postgraduate School in Monterey,
California, in 1986. This photovoltaic test circuit was designed to facilitate the auton-
omous testing of individual solar cells, although configuration for :trings of cells is also
possible. Information accumulated from a number of cells would provide statistically
relevant data for accurate assessment of the behavior of an entire array. While this ap-
proach precludes use of the cells for power supply, there are benefits to this method.
The failure or degredation of a single cell, which can invalidate the data from a string
of cells, can be observed and resulting data discarded if inconsistent with the rest of a
test array. Such information might have provided some insight into the degradation
observed during the first month in orcit of the LIPS-II satellite {Ref. 7: p.1108].

The autonomous operation of this circuit with a controlling svstem and memory
device would provide real-time data acquisition, as on the LIPS experiments [Ref. 9:
p-688]. However, if real-time collection is not possible, or undesirable, data storage in
bubble memory or other nonvolatile memory devices 1s possible. The lack of a data re-
cording system created problems in data handling and collection during and after the
Solar Cell Calibration Experiment (SCCE) carried out on the space shuttle in 1983-4
[Ref. 10: p.301]. Data storage also allows collection of data for extended periods of time,
such as on the proposed CRRES solar cell experiments [Ref. 8: p.10).

Data for entire I-V curves can be collected, opposed to a few points, as on the LIPS
tests, where only seven data points were collected per curve [Ref. 7: p.1108]. Since the
P, point shifts during the life of an array, monitoring this parameter is important. A
few points of data will not provide accurate enough information for analysis of such
deviations. Parameters such as temperature, sun angle, time of day, etc., can also be
stored with cell 1-V data, simplifving retrieval and correlation of environmental infor-

mation.

B. TEST CIRCUIT REQUIREMENTS
There were a number of requirements in the development of a low power, light-

weight, inexpensive, and accurate solar cell parameter measurement scheme capable of

11

operating in the space environment. Below are specifications developed for the auton-
omous test circuit {[Ref. 11: p.68§].

[. 1. Minimize series resistance through current sinks.

(34

Ability to record data accurately.

Capability to sweep current through entire 1-V curve, (V. to zcro voltage at 1,.).

Capability to measure a series of multiplexed cells and senscrs accurately.
Internal resistance of multiplexer CMOS switches should not affect measured data.
Circuit must be simple and small .

Low power and low thermal output.

I I

Buffer input and output signals to insure accuracy.

C. DESIGN
The actual solar cell biasing circuit is composed of a high gain (h,,) bipolar junction
transistor (BJT), (eg. 2X34035, with h, > 400), placed in a common emitter configuration

[Ref. 11: p.70]. The test solar cell is placed between a 5 volt power source, V__ , and the

ps »
collector of the transistor. This voltage level was chosen to preclude the possibility of
saturating the transistor in the circuit. A lower voltage would not ensure this. A resistor
is placed between emitter and ground. An operational amplifier, in a unity gain config-
uration, utilizes its high input impedence to buffer and prevent undesirable current-
produced effects in resulting test circuit data. Figure 3 on page 13 depicts this circuit

[Ref. 11: p. 71].

12

LMT741

Figure 3. Novel solar cell biasing circuit.

The test cell provides a load to the transistor. While very little or no current, (1),
is allowed to flow into the base of transistor, collector current, (1), approximates emitter
current, (I,). In this situation, with the cell illuminated and no voltage applied to the
base of the transistor, the voltage across the solar cell is V.. The difference between

V.. and collector voltage V, is the solar cell circuit voltage:

Emitter voltage, V, , divided by the emitter resistance, R, , provides circuit current, I,
and

Ve/Re=1lc =1,

Since there is no appreciable current drain, I, and, thus, I, are approximately zero. This
provides one endpoint of the cell's I-V curve. As a voltage is applied to the transistor
base, further forward })iasing the device, V, decreases, and current drain increases, until
the voltage across the solar cell drops to zero and I, is reached. By stepping input
voltages to the transistor base, data points for an entire curve may be collected by
measuring V. and V,. {Ref. 11: p.68]

13

A multiplexed system was tested with a set of these circuits attached to a counter
circuit, which simulated microprocessor control, and a digital-to-analog device. The
capability to produce a large number of data points through the D A converter resulted

in very accurate I-V curves.

‘2t

00

14

IIf. MICROPROCESSOR CONTROLLER

A. SYSTEM DESIGN

Rather than design a controller system from scratch, a search was performed to
identify and acquire an operative controller that fulfilled the needs envisioned in the de-
ployvment of the solar cell measuring system. The system needed to be capable of oper-
ation in the space environment. Low power consumption, simplicity, small size, and
compatibility with the measurement circuits were also necessary. Assembly language
programming was initially assumed, due to available supporting hardware at NPS, but
this requirement was relaxed to allow for a higher level language with the addition of
new compilers to NPS.

The controller designed for operation of the NPS Autonomous Space Shuttle Pay-
load Bay Launch Vibro-acoustics Experiment was ultimately chosen for the solar cell
measurement system. The vibro-acoustics experiment, an ongoing project, was designed
for flight in the payload bay of a space shuttle to measure the vibration and acoustic
effects experienced by the space shuttle during the stresses of a launch. The experiment
requires a NASA-approved autonomous control system to detect shuttle launch, execute
a power-up sequence, and operate the experiment. The controller also monitors the
progress of the experiment and contains diagnostics within its software. By necessity,
characteristics desirable for the solar cell measurement system were inherent in this de-
vice. The controller was well developed and documented, both in hardware and in soft-
ware. The microprocessor system was compatible with typical assembly languages for
which support at NPS was readily available. The addition of a ‘C’ language compiler
and subsequent programming of the controller in ‘C" was a further incentive in the se-
lection decision. The controller hardware had been developed for low power consump-
tion, as well as minimal size. The entire controller, including memory, was placed on a
9 x 5.5 inch board and required a single 10 volt power supply. An external RS-232 cable
provided terminal access for diagnostics. [0 ports end at 44-pin connectors for easy
attachment of external devices. The vibro-acoustics experiment also developed the use
of bubble memory as a means of nonvolatile data storage. This capability was not
chosen for use with the solar cell measurement project due to cost and the continued
development of this capability within the vibro-acoustics project. However, bubble

memory presents a viable option for future inclusion as a data storage device with the

15

T Yy
. @

solar cell measurement system. A complete schematic diagram is included in Appendix
A.

B. CONTROLLER COMPONENTS
I. NSC800 Microprocessor

The heart of the controller is the National Semiconductor NSC800 micro-
processor. This device provides the advantages of CMOS construction, a small heating
coeflicient, and low power consumption. The processor has the ability to multiplex the
address‘data bus. An 8-bit machine, the NSC800 can be operated in a 16-bit address
format by multiplexing lower address lines (A0-A7), latching them externally, and com-
bining them with the upper non-multiplexed address bus (A8-A15), which creates an ef-
fective address space of 64K [Ref. 12: p.8]. This familv of devices has a number of
compatible peripheral devices and is capable of addressing multiple input output (1 O)
devices. The mucroprocessor supports the Z-80 assembly language instruction set.[Ref.
13: p.17]

2. NSCS810A RAM-1/O-Timer

The National Semiconductor NSC810A is a random access memory (RAM),
timer, and 1 O peripheral device. This is another CMOS machine, which incorporates
1024 bits of built-in static RAM in an 8-bit format. The I'O section has 22 program-
mable bits arranged into three programmable ports. Port A, composed of 8 bits. is ca-
pable of basic I O operation, or one of three strobed modes. Port B is operable only in
a basic 'O mode. Port C can be used for basic I:O or as a handshake in conjunction
with port A operation as a programmable timer [Refs. 13: p.26. 14: p.1]. Through indi-
vidual port bit manipulation, external devices may be operated. Designed for operation
with the NSC800, two of these devices are utilized in the controller svstem.

3. IM6402 Universal Asynchronous Receiver Transmitter (UART)

The UART provides the controller the ability to interface witkk a termuinal,
which, in turn, allows troubleshooting and diagnostic operation of the svstem. The
UART must also transmit parallel data from the controller data bus to external serial
data lines. The INTERSIL 1M6402 generates the clocking for transmitter and receiver
operation for such asynchronous interfacing. This UART is another low power CMOS
device. [Ref. 13: p.43]

4. MMS58167 Real Time Clock
The vibro-acoustics experiment required initiation of experiments at a particular

time. Power-up and power-down were also part of a power conservation requirement

16

within the completely autonomous experiment. The ability to operate in this fashion 1s
also compatible with the operation of the solar cell measurement syvstem which need
consume power only when collecting data, excepting memory devices. The clock fea-
tures a four vear calendar with month to thousandths of a second selection. The chip
includes a programmable alarm circuit for power-up and power-down commands. The
MM38167 is a CMOS device manufactured by National Semiconductor. [Refs. 13: p.51,
15: p.1].
5. Memory
a. EPROM
Driver memory for the controller is composed of standard CMQOS UV
erasable PROMs. The 2764 series EPROM 1s a low power, high performance device
with good noise immunity. This memory chip has a standard pin configuration and a
variety of versions for specialized applications, including wide operating temperature
ranges [Ref. 16: p.1]. The controller board has space allocated for up to eight memory
chips. The current solar experiment configuration utilizes five of these spaces for
EPROMs, which provide the operating code for the controller. EPROMs provide an
inexpensive method for rapid software development and experimental investigation into
the [imits of controller operation.
b. Buabble Memory
A nonvolatile memory was required for data storage on the vibro-acoustics
experiment. A similar memory system is also necessary {or solar cell measurement data
storage. Bubble memory provides a relatively low power, megabit capacity which is
nonvolatile, even when power is removed, purposely or in the event of a failure [Ref.
13: p.31]. These features make this format ideal for large quantitics of data and long
term storage, as might be experienced during a space mission. Bubble memory charac-
teristics also facilitate the retrieval of data for transmission at extended intervals.
However, incorporation of bubble memory, under development for the vibro-acoustics
project, was eliminated at the current time to . .clude any delays in the solar cell project
which might occur from this ongoing development. The expense of bubble memory, in
conjunction with currently available research funds, also precluded inclusion as a storage
device in this project.
¢. RAM
A simple alternative to bubble memory is a battery powered static RAM

svstem, which may remain powered at all times. This approach would provide for an

inexpensive nonvolatile memory with small weight and power penaltics. The current
controller is not configured for a separate memory power circuit. It was decided to leave
this relatively simple modification for later addition and concentrate on the data col-
lection, storage, and retrieval system for the solar cell project. Thus, static RAM,
standard 8K word, 8-bit chips were chosen for data storage. The 6264 machine is an
industry standard with high-speed and low power characteristics [Ref. 17: p.1]. The
static RAM requires no refresh and dissipates less power than dynamic RAM.

IV. SOLAR CELL ARRAY TEST CIRCUIT

A. OVERVIEW

The solar cell array test circuit was designed to provide a bias on test array solar
cells and collect the resulting information relating to individual cell voltage output and
current. This required conversion of digital signals to an analog form to facilitate bias-
ing the transistors used in the novel cell test circuits. The two signals tapped from each
solar cell were then reconverted to digital form and passed to the controller micro-

processor for manipulation and storage.

B. COMPONENTS
I. DACO0800 8-bit Digital-to-Analog Converter
The DACOS00 is a standard, 8-bit CMOS digital-to-analog converter, which
provides low power consumption and a 100 ns output current settling time. It requires
little direction or external control and operates under a wide power supply range. A
wide range of applications and compatability with standard CMOS and TTL devices also
made it appealing.[Ref. 18: p.1]
2. HI-506A Analog Multiplexer
The HI-506A is a rugged analog multiplexer with the capability to automatically
multiplex or demultiplex analog signals. That is, it is manufactured with the necessary
internal switches so as to be insensitive to signal flow direction. For this application the
demultiplexing capability was required. This component was also designed for space use
and has a high electrostatic discharge (ESD) resistance. [Ref. 19: p.1]
3. ADCO0809 A/D Converter and Multiplexer
The ADCO0809 device incorporates an 8 channel analog multiplexer, aiding in
the minimization of individual hardware devices, and allowing direct access to analog
signals. The analog-to-digital converter is an 8-bit machine using successive approxi-
mation for conversion. The converter requires no external scale adjustments. Latched
address inputs and outputs also maximize ease of interface with microprocessors. It is
advertised to have no missing codes and a total unadjusted error of £ 1/2LSB, important
considerations in the accuracy of the final output values. A CMOS device, it also pro-
vides high speed, accuracy, minimal temperature dependence, and low power consump-
tion. {Ref. 20: p.1]

19

C. DIGITAL-TO-ANALOG CONVERSION AND DEMULTIPLEXING

The 8-bit digital bias signal generated in the controller was directed to the
DACO0800. (Figure 4 on page 21 refers.) The input was converted to positive current
output and referenced to ground. The output current signal was converted through an
LM741 op-amp to a positive low impedance voltage output. This output was then for-
warded to the HI506A Analog Mulitplexer. Individual solar cell address information
was wired into the multiplexer from NSC810-1. The received voltage signal was thus

routed to the correct cell on the array.

D. ANALOG TO DIGITAL CONVERSION AND MULTIPLEXING

The desired analog voltage signal was actually the difference between source voltage
and transistor collector voltage. An LM74l, in an instrument amplifier configuration,
was placed across the biased solar cell to provide this difference voltage. The resulting
desired analog cell output voltage was then routed to an ADCO0809. Here, address lincs
from Port B of NSC810-1 facilitated demultiplexing. The signal was converted to a
digital signal and passed to Port A of NSC810-2, as may be seen in the solar cell array
test circuit schematic in Figure 4 on page 21.

Current information was tapped from the biasing transistor’s emitter lead in analog
voltage form. It may be recalled that this voltage value, divided by the known emitter
resistance of 10 ohms, provides the desired current value. This computation is accom-
plished by software in the microprocessor after analog-to-digital conversion, prior to
retrieval of data from storage. In a manner simlar to that of the voltage signal con-
vergence scheme, the current information signal was directed through a second
ADCO0809 and the resulting digital data placed on Port B of NSC810-2.

E. INTERFACE

The two NSC810 IO devices were utilized for digital signal output, chip and data
control, and digital data input. Port A of NSC810-1 was used for bias signal output.
The stepped output signal provided a bias for the solar cell novel test circuit. The lower
three bits of Port B on NSC810-1 carried solar cell address information. The fourth and
fifth bits provided a start convergence’ pulse for analog-to-digital conversion on the
ADCO0809 chips. The ‘output enable’ signal to the ADCO0809 devices were always as-
serted. Signals output by the NSC810 ports were internally latched, providing simplifi-
cation of timing and allowance for the settling time of signals before reading or

conversion.

20

unaye 30U ‘sot 1 ddns unrod e 10 sded 8oy sn.p
umoye 3ou ediyn e uo eden scedhg gng e
HT S40ICLE0U 31ND 1D duir_do Juswnasul

%Y 8J03S16DS dnyind ;gajan

- s —————
SN AN sa)e—]
ao aND ~| Ri GIO}-aND
f 1 + i1+
——1ra LR BL
Y.mcm MT ——— 11 M Ef— - |-
“ —Vla W} -w—as pTp o
oo _m_ — |1 o) — 1 5o
+ EPN IR —]Tw xab— -)
at+ — [xit19 L2415)- —1 e
qp MO _ o1 el LT CIRPTE) ¢ it B ¢
v w .W.U) v...u\. — haing gl fp— -—J e
|- — 1 — it eni—-f €
S ohw——T |20 = w# e T —{v
DN o % O rvan —lr1 ent —1 s
"o ST+ (e —|9
s o a1 o
m] Si- — —] @
vA F3x oo Ul —|:
—AM———— —]2
g o i 1u| 9 A tvan | m €
5y mo —1-.4 aO-aND et B4 15
-~—— el +.R1)- €+ H—1 S =
—ira NS+ —1{ 9 ~
—ica bl o) —1:sQ £
d JO gt ~1 vod @ —
ia o = (]
Iy o) ————— | 2 2Ta06eN “
XY LG | —————————— -
II._||H b0y 2N 'S
— MUy oMl o
8 S ITY S =
iy v f— o
_lnH oM CHL o
LOLDaY Q
L
é -
o
o
Y o
Rt cut- 113 -
Y] _Pin}~ -{a> o
"y @} —ano e v
N3 6 1— I -1 e
T o1} —lca wul— — 2 8
e T —|a ea rl_ [o
€ =4 gl —r8 =3¢ v 2]
v e - —loa aj— S
s L sI+—fin anu] W 9
9 S1— @T+gm—{inm -n 1Y <
3 ar —ie
5] ¥} I @
-n oM L2 =
Lo +n € &o
UD0GTH ~ m e
{9
-1 4a
~{sd
1 @TR0eN

.4

; Two of the ports on the NSC810-2 were used for test circuit data retrieval. Port A
[received voltage information, and Port B current information. Two bits of Port C were
b utilized to record the end-of-convergence signal from the ADC0S09s. A clock signal

from the controller was passed to the ADCO0809s via a spare port bit on the NSC810-2.

22

% V. SOFTWARE
A. CONTROLLER ROUTINES

The controller software files below are described in a cursory manner. They were

originally designed for another project and modified for use in this application. A more
complete description and use of the files developed for the NPS vibro-acoustics project
is available in, Control of an Experiment 1o Measure Acoustic Noise in the Space Shuttle,
by Charles Cameron [Ref. 21].

The software developed for the microprocesser controller was written to provide for
autonomous operation of the system. This required a timer and alarm routine to power
up and power down the svstem. A substantial diagnostics routine and menu further
provided for ease in manipulation and testing of the controller. Some of these features
were incorporated in the portions of code utilized for the solar cell test syvstem. The 'C’
language was chosen largely for its readability, opposed to assembly languages. While
a “high level” language, C provides the ability to simply manipulate individual bits, as
well as operate on words and bytes. C is also very portable. Appendix B includes the
start-up and operating routines for the microprocessor controller. These files are, for the
most part, modified versions of those written by Cameron [Ref. 21: Chapter 4 and Ap-
pendix Bj.

Header files. designated by the ".h” in the file name, are used to define and declare
variables. constants. functions, routines, structures, etc. which will be utilized in the
overall program by various modules of code. The header files indicate where externally
defined code is located. This is necessary for program compilation.

The header file solareva.h defines parameters necessary for start-up and operation
of the controller. Bit definitions, 1. O assignments, and clock routine definitions are
provided. Some of these have been renamed or modified for specific use in the solar cell
test routines, which utilize 1'O in a different manner than originally intended for the
vibro-acoustics routines. The files solar.h, initial.h, convert.h, global.h, inout.h, delay.h,
newio.h, and clock.h are all header files which declare functions, variables, etc., used
within the associated C file, which has the same name as the header file. Such header
files must be included with routines which utilize these “externallv” defined parameters.

C files, those whose name are followed by “.c”, are the actual start-up, operation,

and test routines compiled and executed by the microprocessor. With the exception of

celltest.c, all the .c¢ files are copies of, or modificd versions of the files written by
Cameron for the vibro-acoustics project [Ref. 21: Appendix BJ.

Initial.c is the initialization code for the controller. The operations executed here
set [O ports, initalize functions and sequences, and start the timer operation. The
wnitial.c file 1s executed by solar.c. The solar.c module provides monitor and keyboard
interface, displays the version of the routines used, and prints a menu for routine oper-
ation, testing, and diagnostics. The separate modules which actually accomplish these
actions are accessed by solar.c. The importance of header files becomes apparent here
as routines external to this file are required for its execution. Solar.c contains the
“main” portion of the program, the code from which all other routines are accessed, and
to which they ultimately return. The menu selections ‘Execution” and ‘Data Memory’
were added for experiment execution and data retrieval, respectively. in the menu section
of code.

The convert.c module provides ASCII to hexidecimal, decimal, or binaryv-coded
decimal (bcd) conversions, as well as the reverse operations. This is necessary for human
readability at the monitor, and keyboard interface.

Inout.c provides the actual data output and execution of keyboard input commands.
While the functions in this file are all written in C, some functions were more efliciently
written in assembly language, and hence, newio.s includes the operations of input and
output of data to and from [O ports. Note that the .s indicates an assembly language
module. The start.s file is the processor initialization code which is executed when the
system is reset or initially powered up.

The file global.c includes information necessary for the timer and alarm routines
defined in clock.c. The clock.c file provides for initialization of the clock and setting a
wakeup time via a menu driven routine. The clock operates on a four vear cycle and
may be set from months to seconds of accuracy and waketime. Delay.s creates an “n”
millisecond time delay. This delay was used at various points during software and
hardware interface to check completion or execution of digital-to-analog and analog-
to-digital functions as well as verify conversion time. A symbol table has been included
which specifies variable definitions and declarations within compiled routines. The table
also provides memory address information, storage allocation, and total memory and
addressing necessary for programming PROMs.

Programming was done on an IBM-PC utilizing MS'DOS. Compilation was ac-
complished with the Uniware C Compiler, produced by the Software Development Sys-

24

L B

tems Co.. of Downers Grove, lllinois. Completed programs were linked, assembled, and
transferred to EPROMs on the same machine.

B. SOLAR CELL ARRAY ROUTINE

The solar cell array test routine, celltest.c, was designed to directly interface the test
circuit with the controller, input’output information, and manipulate that information
for storage and use. The entire program is included in Appendix C.

Celltest.c first defines the variables used in the routine which assign constants for
bit manipulation during execution of the program. ARRAYSZ defines the number of
solar cells in the array. STOP and START provide high and low assertion for operating
bits on the ADC0809s. Variable declarations are also made prior to entry into the exe-
cutable code.

Three structures, groupings of specific variables that mayv be handled together in a
particular format, are defined. The first, PORT1_B, allows bit operation on an output
port to assign the solar cell address of interest and to provide the ‘start convergence’
pulse necessary for analog-to-digital conversion by the hardware, all via the ‘command’
operator. The second structure, C_PORT, provides access to two bits which must be
read when the ADCO0809s have completed the convergence cycle. The third structure is
called data_pt. This grouping assigns two variables which will hold information for a
single data point. Each pair of these points is assigned to a cell in the array,
experiment_data, which is defined to allow memory space for a maximum of 256 data
points for each of the eight cells included in the array. Figure § on page 26 follows the
flow of this routine.

Following these definitions and declarations, the executable portion of the routine
begins. It 1s labeled ‘execute’. The routine begins with a loop for which each iteration
completes the testing of one solar cell. Following the ‘for’ statement which initiates this
loop are three statements which initialize a variable counter and two comparison vari-
ables. After these initializations are two statements which address a particular solar cell
via the PORTI_B structure through a ‘command’ statement, and execute the assignment
by output through port 1 of NSC810-1, the addressing and control output port.

A second ‘for’ statement is next executed, providing for the biasing voltage ladder
and associated control, manipulation, and storage of resulting data for each data point
created. There are 256 voltage levels, evenly distributed through a three volt reference
source, which provide the steps in this loop. These values are passed, one at a time,

through the D A converter, analog demultiplexer, buffer op-amp, and to the cell biasing

25

——

Irrtiatize

) 2= cah
et
tested

——

Bias vsliage
lagcar
Us=g to 255

cCNvergance

Is
data
Spurrious

Store cata

Figure 5. ’‘Execute’ routine flow diagram.

— b a4 v " v

circuit. Once the cell has been biased, the start convergence pulse, ‘strten’, is asserted
with START and STOP statements. A single pulse is used to start the convergence cycle
of both A'D converters. When each ADC0809 has completed convergence of its as-
signed analog signal to a digital signal, ‘end of convergence’ pulses are transmitted by
the analog-to-digital converters. These pulses are received and latched by two bits of
port C on NSC810-2. A "while’ construct waits until these corresponding bits have been
asserted before allowing execution to continue, thus assuring complete conversion before
storage of data.

The next 'if’ statement checks for a current value greater than zero and deletes un-
changed data values. This prevents unnecessary storage of data or storage while the
input voltage ladder overcomes the forward voltage of the biasing transistor, and during
which, no current flows. The voltage ladder provides voltage that will eventually satu-
rate the biasing transistor and cause a negative voltage measurement. It should be noted
that the analog-to-digital conversion recognizes only magnitude and not gender, pre-
venting a simple search for negative values. A succeeding nested pair of 'if’ statements
provides a smoothing effect on data by deleting data which is inconsistent with the curve
as a result of conversion or other error. The I-V curve of interest need not collect data
bevond the point where voltage has reached zero. At this point the difference between
the bias voltage and the solar cell output has become zero and short circuit current has
been achieved. Thus, the succeeding ‘if” statement ends the the input ladder by incre-
menting the counter to 235. The two digital data, voltdata and currentdata, are stored
in RAM at this point. The storage statements reflect the fact that not every step of the
biasing loop will result in storage of a data point; the row’ parameter only increments
when data is stored into the array. Figure 6 on page 28 follows the flow of this routine.

The succeeding routine, ‘retrieve’, is executed by selection of the appropriate choice
on the controller menu. When called upon, this routine retrieves the stored data from
RAM by first identifying the appropriate cell number, entered via the input terminal.
This cell number corresponds to the column in the storage array which holds the stored
data. The retrieving loop is written to stop retrieval at the end of data in the loop.

Voltage and current data were stored in hexidecimal form to minimize storage allo-
cation requirements. Thus, for plotting and easy human interpretation, the data must
be converted to a decimal form. Data is converted to floating decimal upon retrieval and
appropriate scaling factors applied. A one volt reference was used in the analog-to-

digital conversion of the voltage values. This corresponds to 0.0039 volts per step

27

vrvv;vv-—‘
@

.

Read desired)
cel! number
from

terminal

output
volt x conu, factor

cur. x conv. factor

No

Figure 6. ‘Retrieve’ routine flow diagram.

through the 256 step ladder within the ADCO0809, the applied multiplication factor used
during the voltage conversion step. However, inherent conversion error requires an
offset factor which increased the multiplication factor to .0040 for silicon cells. A wider
range of current values was required because of the different outputs produced by Si and
GaAs solar cells. Thus, a larger reference voltage was required for the ADCO0809 used
in converting the voltages which indicated current levels. The three volt reference used
here corresponded to .0117 volts per each of the 256 steps. However, this value required
a further division by ten ohms, to complete the conversion from a voltage value to a
current value. In order to account for the conversion error of this ADCO0809, the factor
was changed to 0.0116. The emitter resistors must also be accurately measured prior to
current calculations and accounted for as well. Finally, the two decimal form values are
output by the microprocessor. These values, with a third parameter unique to the plot-
ting routines used for data display, were transferred to floppy disk via the Procomm
interfacing program. Header and trailer inputs were included for convenience interfacing

an existing plotting routine in another program.

28

v

T ey
N A |

vy,

VI. TEST AND RESULTS

A. TEST

Data output format was a manipulation of hexidecimal data into floating decimal.
This facilitated interface with a ‘personal computer’ in the laboratory and the transfer
of data to another storage medium for easy analysis. Conversion from hexidecimal to
floating point decimal need not be accomplished within the controller, but was in this
case for convenience. Data was retrieved from the solar cell test system via a commer-
cial interface program. Both available and versatile, 'Procomm’, developed by
Datastorm Technologies, Inc., was chosen for this task. Retrieved data was transferred
to floppy disk files and printed out in graphic form via a plotting routine on the solar
laboratory computer. The plotting routine was part of the program designed for solar
cell data collection, storage, and analysis using the NPS Solar Simulator and associated
hardware developed by Don Gold [Ref. 22: Appendix Dj.

Ideally, the solar cell array test system was designed to allow data collection from
an entire array of cells. Practically, the system was limited by the solar simulator light
source used at NPS with this project. The illuminated area produced by the simulator
provides for, at most, a pair of 2 cm square cells under AMO conditions. Thus, data

collection was limited to single cells.

B. RESULTS

Data collected with the microprocessor-based system for silicon solar cells was
plotted and compared to that produced by the direct measurement and storage system
in place in the N\PS Solar Laboratory. Figure 7 on page 31 and Figure 8 on page 32
are of two different 2 cm x 2 cm silicon solar cells and show the similarities in the results
of the two methods of data collection. A sample table of silicon data is provided in
Appendix D.

The results for GaAs solar cell comparisons is somewhat different, apparent in Fig-
ure 9 on page 33. While a small adjustment of approximately 60uV was added for ofTset
and resistor precision error, this adjustment proved inappropriate for GaAs cells. At this
point, the effects of several types of analog-to-digital conversion errors should be inves-
tigated more closely in conjunction with the conversion process. These effects include
[Ref. 23: p.113.}:

29

1. Offset error values which are within the range equivalent to the LSB but have
shifted the range upwards, eflectively extending the error range.

~

Gain error caused by an input value that is a fractional value of the full scale range
(FSR). resulting in a corresponding fractional binary output. The binary output
becomes detached from its analog input with greater fractional values of FSR.
Figure 10 on page 34 portravs a relationship between practical and ideal transfer
curves of binary representations for fractional FSR values.

3. Nonlinearity for the range of analog voltages applied when compared to the binary
codes producc . If this error is significant, differential linearity may cause a skip
of certain binary codes, known as “missing codes”.

Tests executed with the delay of one or more milliseconds indicated that ample time was
allowed for complete convergence, and thus, should not be a factor in the errors ob-
served. Tests conducted without a delay on silicon cells produced no variations, com-

pared to those with the delay.

30

C(AW) F9VLTI0A

0027 0017 0007 006 008 00Z 009 00S OOF OOE 002 o007

ﬁlboln_ TTTyETTTTIUrETTTCY Y

-1 T I T -r I T

wNsAS paseq-1ossadordoidtjy

HDURINSEY [y DA

0

-

0
(22
o€
14
09
GL
06
210}
0ct

GET

0G7

LN3IHHEN3 .

(vw)

Sample 1, silicon solar cell I-V curves.

Figure 7.

31

< J

[TTTTr

===

“(Aw)

JUDWRINSTLI A, 1]

JIVLI0A

00271 0017 0O00F 006 00B 00Z 009 00S OOy OOE 002 007

J
WSS pascq-1058s2301d0IdTN
-

0

TTTTHRYTTTTUTTTITTrTTY rTTYTTGrY Tt v)

0
G7v
o€
14
09
GL
06
GOt
02t

GE?

L a a_a_ah

06t

+

INZEHND

(Vw)

Sample 2, silicon solar cell I-V curves.

Figure 8.

e mw

(AW) 39VLTI0A

0027 0071 O0O0F 006 008 00Z 009 00S 0O OOE 002 007 O

T -1 T Bl b i v | T T T 0

167

-0€

JUDWINSLI A 19211(] Bl

-109

1A

f/ 06

wans{g paseq-1ossasoidosoy —T

-G0?

-10271

-GET

0S8t

0

1N3HHENO
33

Sample gallium-arsenide solar cell I-V curves.

(vw)

Figure 9.

P Output 8

A (ideal)

1
FSR Input

Figure 10. Practical versus ideal binary/fractional FSR transfer curve. [Ref. 23:
p-113)

34

Vil. CONCLUSIONS

The microprocessor-based solar array [-V measurement system was built using a
controller previously designed and tested at the Naval Postgraduate School in Monterey,
California. This controller's programming was modified, and its 1;0 ports connected to
circuitry specifically designed for this project. Digital biasing signals were demultiplexed
through an addressing scheme and converted to analog voltages. These voltages were
then used to bias a novel solar cell biasing circuit, from which two voltage taps were read
on each cell. Successive taps, representing cell voltage and current data points, were
multiplexed, converted to digital values, and stored in controller memory; data repres-
enting a complete solar cell I-V curve for each cell in the test array. Another pro-
grammed routine enabled retrieval of this data, manipulated into decimal form for
handling and analysis.

The microprocessor-based solar array parameter measurement system is a viable
method for collection, storage, and retrieval of I-V information and other pertinent data.
The system is capable of accurately measuring a number of cells in an AMO environ-
ment. Data may be accessed from system memory, manipulated, and analyzed.

There are a number of improvements and possible avenues of study to pursue in the
further development of this project.

I. A more complete studyv of the accuracy of the systems output, including the possi-
bility of using a 16-bit microprocessor system.

2. A software or hardware approach for analysis and compensation for conversion
error effects.

(%)

Installation of the alarm clock system for timed power-up and power-down.

4. The inclusion of nonvolatile memory; battery powered or bubble memory.

35

T

v 401 s3bs| 48-82-8 1diwd _ ——
vi nls Qlove-lee o8l [o ﬂ—._ ol

¥37041H0 808ISN 3 Tomel o
Cr6Lé *VINNOII W) *AJEIIIGM =
T00HIS 31UNAVADLS0d TWAUN i
26 o0v
_ I8

TSTTIT Y

T A
Qa 784
bl (T
: R o
M O
10081 ﬁuimm,wm
A
Niei} =%

RS TUTINFTY brror Mo D TCUIT) brvor M

T30 8t 287104 VmuLr W 1 fiedaad
—1a,t RijdescEe T 08i3 e[843 2e
. Ly Y] Yac €04 f"wmuj 017624 D
—_——— Niti/e0d 11 — & NITLs90d
- ?INNH_J. 100T1-829 ﬁ.. 2342 1norirse “
v T ovd \Iﬁdﬂ'ﬂ.ﬂ.‘t
L St 4] My b Yow 37|'v¢
R 13 P —Iov cI)ive
1 o {0 Mt el 2) N
I i T wow TEE| Ve
: “TRiv YT T 24 e
v .) e
—_— Nan'l-ﬂ. L{vd \INO‘JJ ivd
ol SRR L IO 5 Mt o D T S M
Ll St 1 2 1S oo T lodTer|' 8¢
TlTTYiA T 1Tse TSt
T rra_tiltee T TTtg TR(c e
et i e L i
TIRiR Tee]ee o e ST L
“1 s o) e
B A a3 - Toa ¢t 9 r 1o
@T855H STa05H Twa e e N & a0
sn " TEea 3 Mu“ v ov —— :H
it 3 étv R T]
,L “hie@ THPA N T e il
i e S e TG T
Tl edt T P Y T} T e TR
Bt W T I) -t E LI | S o
) 7 20 § (Gt 1R 103 v Ty
.

v levd

|~
\.

LT

i ded e

[LI
in

APPENDIX A. NPS MICROPROCESSOR CONTROLLER SCHEMATIC
1
d

37

T T | i HERVRFCEE IS i | T Ty T xTT
v 01 L) £0-02-8 v
Tt nde cleee- ise-eet T Jo
43108 H0D SEBISH
EPSE6 *VINNOI) WD *AI8TIN0M
TO0HIS 3i1YNAYY9LSOd TWWAUN
4 { {
4
3 3 3 ppy—
EEH Moy oiSy ey
iy nt o s Lod) At oviay
oy - ' —— vl g 1 to} g~
o My v} Tw} o ~———y
1w [&V [S
™ v g——— v 3 —— (2", oea——
(L svi 3 LW} > - — VT
vy —— oo » 9| $ e " e
——y O v} F ———- - A A B [2ummmns T %0 L) —r——— T i
— Qe W ———gt {10 oz - ——11io VR rrio o
— 0) ~— 110 v} g et 1R (1] v} Sy ——— ———zi 1O ooy
— Lo e -—1 —3ko R e— —-to ot [Jw co I a—
—_—2c ot o Sy b0 e g— —— r0 Vivj § —— ~—— »0 V1w ot
(.'llm" (2N | olv ﬂm " 20 2w m.ll {Ilw“ 20 Tiw m.. /I'vl»h« %0 Tt ml‘.
TPt v st % e
—— ko B y——] ~—rke WSy —Z1 |0 oy —q1 10 sty
o = ‘lu .'_r dorty
vsid vo:Z vare 2
Torw” Toswe’ Ze0vw- ouw*
y 35 3
3K¥, v 1 3 M
Mer—— a1 v] — bov £) B
" Tw F emamemne 1 H v .
vy T H -~ v F L4 T
v v p—— Ly s G} s
repy———— | g vol g v r———
v | Saa— nu ‘e v g————— n(;ﬂ.ll'
™) o ——— vf & ———— Yol S
v »’ | 4 L4
—~——7y{®0 . g —T7®0 LW ——— S———r {00 L@} 3 —rm——— —yT0 vt r——
{10 g —— ifro o] mu.lll lw.«. 10 '™ Mﬂl ~——s1{to o oe————
———1 ft0 o~ r—— —zife0 oo Sy——— ~—zi}]0 b Sy —Fifto ow Sy
———3i{t0 ot} g —— ——zi {0 olvtyy-—— ——zy f€0 Ol g —zifo ot py——o
sife Vv g —— —3i {0 T —z, o Vivf pg—— ~——3ifo et (y—nr
- Z11s0 tvys ~—— i [0 Tivf g — 7 fs0 Uy 3= —— i {0 o) pr——
/{OII irpe i |70 — {0 \uamamt 12 bed
-3t] uod -y ——3t}e N X (,mm L0 wosl oy f {0 t@,a 1
b L A _ “ir A
(8221 (21X 4 .z *9ul
Tsiww:* T0oww* R L X TN Tebwy*
| I} 1l
! (] (]

I Il 1]

vy 01 aams 48-02-8 +wa

vl nls 01000-108-881 [Ts

¥I1WWINGD G98ISN
Evelé "VINEO I WI ATIINOM

JO0HIS 3I1YNQUAILSOd TUNUN

7 {
4 (
* —
*
oy’
EOw ° tOnww
- _ - vsbl . WA
oty qs €oow
vy
(v
- Lonww:
i -
S
. erimy E
v o
<
Coiww 3 covv - 3 -
b o4 REEL] ‘U— S AL N Ar
i1 30 hy—————— S XET v bty -
Tk 1OV fyy———— 01 | Eonw
Ty 00D Iwls ﬁ <c] 493 84 fye——— osw:
o) ~ﬂ" _ Fe]25W w32y H WA
wel e LS [yp ————e * Sc{1sw 0] onw: .
T 03 fo g i ses 3 by . fo vy
PR 14 24 110 250
[143 .
Tifem 1] % Sm— o w1 3sofa hiaad
—g{on Y gejoa 190 pyor——— RO g | ey
=] o 20 |gy ~——————r §v] 102 -ua?.ﬂl\ Nl amshoy
-1 w1 €0 fry +{ i Gae b 10 1nl fey——
“g] Nt *q gy ————— AQa p onwe -
—31 s S0 fer ! yvjea8y ®ada}. 191 hotd o
hrd K0S % lyr rea ALLDS Tuda fry 3t1{'0 03—
—3{ o whr 3+ tne [ZTLY A T7{% $2 frp——r’
=] 10 - peltu [e R 11 [T v |~
ar] 2 o g ————— i {r e vaaat? trlra tv
yr] ind Tepre Ye{»rdl Sody i aelad 4
<r{ ot v e— PR LTS sasal] 13|%0 (3
1 sins € {amst S prfcw tuvafz i
T 3RS T eeva
v e M
|
A

DY _ AR ST . WESRN b A

il o
o

Y

APPENDIX B. CONTROLLER START-UP AND OPERATING CODE
A. FILENAME SOLAREVA.H

/% May 4, 1988 solareva.h */
#define TRIES 3 /% Number of times to try something before giving up. %/
#dafine STRLEN 7 /% Number of characters to allow for integer

characters, including a null terminator. ¥/
#define HSTRLEN 2 /% Number of characters to allow for hexadecimal

characters®/
#idefine HEXINTSTRLEN 4 /7% Number of characters in a hexadecimal word. %/
#cdefine DUMPWIDTH 16 /% Number of bytes in a line of a memory dump. %/

#define TERMON 0x08 /% Points to the terminal comnection line in NSC810 #1,
Port C, Pin 3. %/

/% Bit definitions for port C of NSC810 #2. (Base address is 0x22.)
Bit # Meaning

X

X

X

End of Convergence signal EOC-2

End of Convergence signal EOC-1

X

Q=N WP

*/

#define READC1 0x02 /% Points to the NSC810 #1, Port C, R/W register. %/
#define BCLRC1 0x0a /% Points to the NSC810 #1, Port C, Clear register. %/
#define BSETC1 OxOe /% Points to the NSC810 #1, Port C, Set register. %/
#define BCLRC2 Ox2a /% Points to the NSC810 #2, Port C, Clear register. %/
#define BSETC2 Ox2e /% Points to the NSC810 #2, Port C, Set register. %/

#define MDR1 0x07 /% See the documentation for a description of the %/
#idefine DDRA1 0x04 /% use of these ports. %/
#define DDRB1 0x05

#idefine DDRC1 0x06

#define TMO1 0x18

#define TOLB1 0x10

#define TOHB1 0X11

f#idefina STARTO1 Ox15

#define MDR2 0x27

8define DDRA2 0x2%

#define DDRB2 0x25

#define DDRC2 O0x26

#define TMO2 0x38

#define TOLB2 0x30

#define TOHB2 0x31

#defina START02 Ox35

#tdefine PRTDATA Oxc0 /% Port rumber for data from RS5-232C interface. %/
fdefine PRTCTRL 0Oxe0 /% Port number for control information from RS-232C

39

interface. %/
fidefine PRTOUTRDY Ox01 /% Bit zero of the PRTCTRL byte is a one if the printer
is ready to accept data and zero otherwise. %/
m fdefine PRTRDY 0x02 /% Bit one of the PRTCTRL byte is a one if there is
data to be read and zero otherwise. %/

#define PORT1_DA 0x%00 /% D/7A Output address (port A on NSC810-1) »/
#define PORT1_CTRL 0x01 /% D/A Control Port (port B on NSC810-1) »/
- #define PORT2_ADV 0x20 /7% A/D Voltage input »/
3 #define PORT2_ADC 0x21 /% A/D Current input »/
$define PORTC2 0x22 /% A/D EOC port %/
#define TRUE oxf¥f
8define FALSE 0x00
$#define ASCII 0 /% Used as a parameter to showbubbuff(). »/
#define HEX 1 /% Used as a parameter to showbubbuff(). %/
#$define NULL 0x00 /7% The following are ASCII definitions. »/
I. fdefine BELL 0x07

#define SPACE 0x20
#define DELETE Ox7f

#define THOUSANDTHS 0x60 /% The ports for reading the date and time. %/
1 ° #define HUNDREDTHS 0x61
- #define SECONDS 0x62
#define MINUTES 0x63
&8 #define HOURS Ox64
. Bdefine WEEKDAY 0x65
#define DATE 066
#dafine MONTH 0x67
struct datetime { /% This structure contains binary coded %/
char months /% decimal data as defined for the National %/
char dates /% Semiconductor MM58167A Microprocessor %/
char hours /% Real Time Clock. %/
char minutes
char second};

char hundredths
char thousandths;

)3

struct idatetime { /% This structure contains the same %/
int imonth} /% information as the datetime structure, but¥/
int idate) /7% in integer format. clockint() takes care %/
int ihours /% of converting from BCD to integer format. »/
int iminutes
int iseconds
int ihundredths)
int ithousandths}

}s

40

i
b
s
|
>
N
»
1
b
’
14
H
v
!
N

gp——

-

B. FILENAME SOLAR.H
/% April 19, 1988 solar.h */
extern void version(void);

extern void memory_dump(void);
extern char menulvoid);

C. FILENAME INITIAL.H
/% April 19, 1988 initial.h %/

extern void inithardware{void);

D. FILENAME CONVERT.H

/% convert.h April 20, 1988 %/

extern char atoh{char %*ascii)j

extern unsigned int atohexint(char asciill);
extern int atoilchar %*s);

extern char *bcd_asclchar bed)s

extern int bed_inttchar bed)s

extern char x*ctoh(char byte);

extern char int_bedtint decimal);

extern char ¥itoalint n, char sl));

extern char tolower(char c);

extern char ®*uitoh{unsigned int word)s

E. FILENAME GLOBAL.H

/% BApril 19, 1988 global.h %/
extern char prtconnected;

extern struct datetime clock}

extern struct idatetima waketimes

n

41

'v

-,

A a4
1@

be

F. FILENAME INOUT.H
/% April 19, 1988 inout.h %/

extern char checkprtivoid), gethex(void), termin(void);
extern int getint(void)s

extern unsigned int gethexint(void);

extern void dumplunsigned int address, unsigned int length);
extern void echolchar data), portdump(char %string);

extern char termini(void);

extern void testinput(void), testoutput(void);

G. FILENAME DELAY.H

/3NN I I I I IIIEIIIIIHHIIHHHHIEE NI NNR /
/*delay.h May 19, 1988 Header file for delay.s in ASMSOURCE directory »/

extern void delay(int);

H. FILENAME NEWIO.H

/% April 20, 1988 newio.h
header for newio.s, in ASMSOURCE Directory. */

extern char input(char port);
extern void output(char port, char data);

I. FILENAME CLOCK.H

/7% This file contains external declarations in prototype format for
all the functions defined in "clock.ec". %/

extern void clockint(struct datetime *clock,struct idatetime *iclock)s

extern void clockread(struct datetime *your_clock};

extern char clockcompare(struct idatetime *clockl,struct idatetime %clock2)i

extern void clockset!struct datetime %clock)s

extern void clocksum(struct idatetime Xresult,struct idatetime ¥clockl,
struct idatetime ¥*clock2)s

aextern void dump_clock(struct datetime %clock)s

extern void rtclvoid)s

extern void show_waketime(struct idatetime »waketime);

extern void testtimeout(void);

extern char timeout(int delaytime,int measurels

42

|
]

J. FILENAME INITIAL.C

/% May 20, 1988

initial.c

*/

/% Baud rates: TOLBl bit is 0x07 = 9600, 0x0f = 4800, Ox1lf = 2400, Ox3f = 1200,

Ox7f = 600, Oxff = 300 %/

#include "newio.h"
#include "solar.h"
#include "“solareva.h”

void inithardware(void);

void inithardware(void)

{
output(MDR1,0x001}3
output!{ DDRAL,0xff)3
output(DDRB1,0xff)}
output(DDRC1,0%x30)3
output(TMO01,0x00)3
output(TMO1,0%25)3
output(TOLB1,0x1f);
output(TOHBl,0x001)3
output(STARTO1,0x07)3
output(MDR2,0x00)3
output{ DDRA2,0x00)3
ocutput(DDRB2,0x00);
output(BDRC2,0x31);
output(TM02,0x00)3
output(TM02,0x25)3
output(TOLB2,0x0a);
output(TOHB2,0x00)3
output{START02,0x0a)}
output{BCLRC2,0x301}}

Vé
V4]
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
/%
Ve
/%
/%

43

Mode byte 810 #1. (basic 1/0) */
Set port A to output. »/

Set port B to ocutput. */

Set port C to input/output. */
Stop the timer. %/

Set timer mode. %/

Set low byte for timer. (Baud rate)*/
Set high byte for timer. %/
Start timer. »/

Mode byte for 810 #2. */

Set port A to imput. */

Set port B to input. ¥/

Set port C to input/cutput. %/
Stop the timer. %/

Set timer mode. */

Set low byte for timer. %/

Set high byte for timer. %/

/7% Start timer. %/
/% Set bits in port C »/

v ¥
i
-

———

T

.

T

K. FILENAME SOLAR.C
/% April 11, 1988 solar.c ®/

#include "solareva.h"
#include “convert.h"
#include "inout.h"
#include "initial.h"
#include ‘'global.h"
#include "clock.h"

extern void execute(void);
extern void retrievelvoid);

void versiontvoid);
void memory_dump(void);
char menulvoid};

7/ FEFEFIEIEIEIE I I NI I IENFIIEI 3 HIEIEIIEIIIIIE NI I HIE I HIE I II T I I I I NI IININ H NN/
void versionlvoid)
{
portdump(
" n rBob Oxborrow's Control Program for Solar Panel Research.'n.r");
portdunp(”Version 1.00 May 9, 1988 nrnr"};
}

7/ FERIFEIITE I 36 3636 JI I TN FIEIEI I IEIIEIE I I 6T I TN IEIEIIEN I FEI I I I NI I H I TN I /
/% This routine lets the user produce memory dumps for any section of memory.%/
void memory_dump(void)
<
unsigned int address: /% Will hold the starting address of the dump.%/
unsigned int lengths /7% Will hold the number of bytes to dump.¥*/
while (TRUE) {
portdump("Please specify address:)3
address = gethexint();
portdump(’ n rPlease specify number of bytes to dump (0 to quit): "3
length = gethexint();
if(length == 0)
break}
dump(address,length);

b}
7/ PRI I HHIE I NI IHHHHHHHHEHEEHEHHOHHHHEHOHHOHOOOHEHE
char menul(void)
{
char dataj

while(TRUE) (
portdump(”.n rSolar panel evaluation control program.inrnr"))
portdump(”A Real time clock functions.nr");
portdump(”B Memory dump..nr")3
portdump("C Execution. nr');
portdump("D Data Memory.'nr*)s

data = termint);
echol(datal;

44

portdump("' nr"*);
switch (data) (

case 'a’': case ‘'A':
rtc()s
break;
case 'b': case ‘B':
memory_dump()3
break;
case ‘c': case 'C':
executel()3
break;
case 'd': case 'D':
retrievel)}
break}
default:
}

portdump("Use a valid letter please! 'nr");

// FEHEFE T 36 2636 JIIE 6T I I 6 62636 I FEIEIEIETE JEIEIEIE JEIE 6 6 D636 J6 FEFEIETE HTEIIE I FIEIEIE I I I I IEIEIEIIEIEN I I I K H 9636/

void main(void)

{

inithardware();

if (prtconnected = checkprt()} {
version(}3
menul);

45

p—

".'

AL AL MK R At aaan 2

L. FILENAME CONVERT.C
/% April 11, 1988 convert.c */

#include "solar.h"
#include "newio.h"
#include '"solareva.h”

char atoh(char *ascii)j

unsigned int atohexint(char asciill);
int atoi(char %s);

char %becd_ascl(char bed)s

int becd_intichar becd)s

char ¥*ctoh(char byte);

char int_becd(int decimal);

char %itoalint n, char si{1);

char tolowerichar c);

char %uitoh(unsigned int word)s

7/ FFIIH I AN 362 I TN 66 I I I I JIEIEIIEI NI I NI IIE I I I NI NI I NI NI NI H NN/

/% This routine converts a two-byte ASCII string representing a valid
hexadecimal byte into 2 single hexadecimal byte. %/

/263336 2636 263 23 3676 HIE 666 26 HIEIE I I NI I I I I I IEIE I IEIEI6 6 6 3636 JEFEIEIIEIIIE I I 2 JE I HIFIIIIIIN N2 /

char atohichar ¥ascii) /%A string representing a hexadecimal byte. %/

{

int iy
char results /% The hexadecimal byte after conversion. ¥/
result = 03

for (i=03i < HSTRLEN && asciilil] ?= NULLj;++i) (
result %= 163
if ('0' <= asciilil && '9' >= asciilil)
result += asciifli) - '0';
else if ('a' <= asciilil & 'f' >= asciilil)
result += 10 + asciili) - *a';
)
returntresult);

7/ 263636 369636 36 36 36 36 96 36 36 JE 2696 36 26 36 3636 I IEI636 3636 3636 36 36 36 3 36 36 36 36 36 J- D63 FEIEIEIE I JE I 36 36 H I I I NI IEIIIE I I I I 236 /
/% This routine converts a four-byte ASCII string representing a valid
hexadecimal word into a single unsigned integer. %/

/P39 3696 3636 36 36 3 6 J606 236 D HEIEIEIE I I I I T2 J6 36 36 3636 3636 3 6 3 6 3T JEHFEIE TN FIFEIIEIE I I JEIIFEIE I I H J I I I I I NI IEN /
unsigned int atohexintichar asciill)
L4

int i

unsigned int results /% The hexadecimal word after conversion. %/

result = 03
for (1=03i < HEXINTSTRLEN &2& asciilil] ?= NULL3++¢i) (
result %= lé6;
if ('0*' <= asciilil && *'9' >= asciilil)
result += asciilil - '0';
else if (‘a' <= asciili] && '§' >= asciilil)
result += 10 + asciilil] - 'a'y

46

—~——v ._...-...—p,.,...mii. e

return(result);

7/ 9636 3696 FE IE 36 I6 36 36 36 I6 36 36 3636 96 36 J6 36 36 I 36 36 JEIEIE I 36 26 I I6 T JE HEIE JE IE I 6T 36 6 I 3636 36 3 36 FIEIEJEIE JEIE I 3T IIEI I HIE I IEI 3 3 M 3 3¢/

int atoilchar %s) /% convert string to integer »/
{

static int n, signy

sign = 13

n =03

switch (%s) (

case ‘~': sign = -13

case ‘'+': ++4s)

}
whils (%s >= '0® &8 %s <= '9') n = 10 % n + %s++ - '0'}
returnisign * n)j

/7 F T 636 3 63 I I I IEIEII I I IEIEIEIE HIEIEIEIEIEIE I IEIEIE I I IEIEIEIE I 3636 3636 36 36 26 I 2 DI I 36 36 3 3 I I I IN N3/
/% Convert a byte of binary coded decimal data to character string format. »/
/% No check is made to ensure that input data really IS in BCD format. %/
char *bcd_ascl(char bed) /% Tested March 16, 1987 »/

{
static char asciil3ls
int bedint;
bedint = 0x00fFf & ((int) bed)s /% Convert to integer. »*/
/% 1f the tens digit is a zero, put a blank in its places
otherwise, put an ASCII digit there. */
asciil0] = (Oxf0 & bedint) ?
(0x30 (bedint >> 4)) : ' '3
asciilll = 0Ox30 ((bcdint & 0x0€))3 /7% Get the units digit. »/
asciif2l = NULLS /% Terminate the string with
a null., %/
returnlascii)s
}

/363636 26 66 3636 6 96 6 36 336 3636 36 J I JE 2636 3 I IEIE 36269636 36 369 NI 26 IIE I FIEIIEIIEN I I H I NI IIMIEII NI NI IN NI/
/% Convert a byte of binary coded decimal data to integer format. %/
/% No check is made to ensure input data really IS in BCD format. %/
/%Tested March 16, 1987 %/
int bed_int(char bed) /% The BCD character to be converted. »/
{

int bedint, results

/7% Take the units by masking off the tens. %/

/% Then throw away the units and Keep

the tens.x/

bedint = 0x00ff & (int) beds

result = O0x000f & bedint;

/¥Multiply the tens by 10, and add to result.x/

result += 10 * (bedint >> ¢)3

returniresult)s

/369636 96 76 366 3636 3636 36 3 36 -3 36 36 36 26 36 36 76 JE 6369 3636 636 36 26 96 36 2 I 36 163696 36 36 6 3 3 I JIIENIIIIN I M IIIIIE I I I N/
/% Convert a character to hexadecimal ASCII string format. »/

47

AN

« .-

oY v vwr vy

‘B"

TP
- Ny

‘al

char xctohi{char byte)

{
static char ascii[HSTRLEN]}
int byteint, nibble, basea;

byteint = Ox00ff & ((int) byte)s
nibble = byteint >> 43

/% Find out whether the nibble is in the range [0-91, in which
case its ASCII representation starts at 0x30 (48 decimal), or
[10-151, in which case the ASCII representation starts at
A = Ox4l (65 decimal). In the latter case, add the value of the

nibble to 65-10 = 55, */
base = (nibble >= 10) ? 55 : 48)
asciil0] = base + nibblej
nibble = byteint & Ox0f;
base = (nibble >= 10) ? 55 : 483
asciill] = base + nibble;
asciil2] = NULLs

return(ascii);

/I I I I IHIIIIREIHEHBRONONHIHHHHHEHOHEOHOHHOHHEIHOHE
/% This routine converts an integer to a binary coded decimal character.
Since 99 is the largest legitimate BCD number, the argument "decimal”

is taken modulo 100. »*/

char int_bed(int decimal) /% The number to be converted. %/

{
int result;
/% Make sure decimal is a positive number. »/
decimal = (decimal < 0) ? -decimal : decimal}
decimal Z= 100;
result = (decimal / 10) << 43
rasult += decimal 7 103
return((char) result)s
}

/3R FIEIEEIEIEIEIE I IEIIEIEI I IIEII HIEIINE NI I NI I NI I NI I NI I I I I/

/% itoa - convert n to characters in s. %/
char ¥itoalint n, char s(1}
<

static int ¢, k3

static char %p, %*q3

if ((K = n) <0)
k = -K3
qQqEp=Fss
do ¢
*pe+r = K Z 10 + '0°y
} while (k /= 10);
if (n < Q) %pes = '='y
*p = 03

/% Get the units digit. »/

/% Terminate the string with

/% 1f decimal is too big, take
/7% Get tha tens and shift them into the

/% Add in the units. %/

/% Corwert to integer. %/
/% Get the tens digit. »/

@ null., */

it modulo 100. %/

high order half of the byte. %/

48

- o v
gy g -

while (q ¢ --p) {
C = ¥q) ¥q++ = ¥p) ¥p = cj)
return (s)}

7/ FFEIEIEIEIE I FIEIEIEIEIEIETEIEJEIE I I I FEIEIEIEIE 26 26 36 I J I6I6 26 JEFEIEIE I IEJEIETE I IIE J6 363636 I6IE JEIE I I6 T 6 36 36 JEIE I 36 36 6 JEIEJI HH X3¢/

/% tolower - if the input is in [A..Z1, convert to lower case ¥/
char tolower(char c)
{

if ('A* <= ¢c &8& ¢ <= '2')
return (¢ + 0x20)s
return cj

/3BBHHHHOHHHOHEHEHHOOEEE I I I I I NI IIIINIIIIOIIIIIIIIIIN NN/

/7% Convert an unsigned integer to hexadecimal ASCII string format. %/
char ¥uitoh(unsigned int word)}

{
static char asciilHEXINTSTRLEN + 113
unsigned int nibbles
int i3
ascii[HEXINTSTRLEN] = NULL3
for (i=03i < HEXINTSTRLEN3++i) {
/% Get the current nibble, in order from most to least significant. %/
nibble = 0x000f & (word >> (4 % (3 - i)));
/% 1f nibble >= 10, convert it to a latter from 'A' to ‘'F',
If nibble < 10, convert it to a letter from ‘0' to '9'. %/
asciilil = (nibble >= 10) 7 ('A' + nibble - 10) : ('0* + nibble)s
}
returnlasciils
)

49

M. FILENAME INOUT.C

/% April 20, 1988 inout.c */

#include "solar.h" .
#include “convert.h”

#include "solareva.h'"

#include “global.h"

#include "newio.h"

char checkprt(void)s

void dumplunsigned int address, unsigned int length)j
void echol(char datals;

char gethex(void);

unsigned int gethexint(void);

int getinttvoid)s

void portdumpichar %string)s

char terminivoid);

void testinputivoid);

void testoutputivoidls

/33696 263636 I 36 D6 6 K6 NI I IEIIEIE 6 I I I HIEIIEIEIIENEIIIE I I JE I NI H JE NI I I I I NI I I KN/
/7% This routine checks to see if there is a printer connected to the
controller. It returns TRUE if there is one, FALSE otherwise. %/
char checkprt(void)
{
/% 1f the TERMON bit of the READC1 port is 0, then a terminal
is connected. In this case return TRUE3; FALSE otherwise. %/

/% This is temporary until we get the terminal recognition hardware working. %/
/% return((input(READC1)) & TERMON)s*/
return(TRUE)3

/YA IR I NI I NI I I NI IR N NN/

/% This routine produces a hexadecimal dump of any section of memory. %/

void dumplunsigned int address, unsigned int length)

{
unsigned int i3 /% Points to the current byte being dumped. %/
char asciil DUMPWIDTH+11l3 /% Contains the ASCII equivalent of each byte. #/

ascii[DUMPWIDTH] = NULL3 /% Make sure ascii has a null delimiter
to look like a C string. */
/% Conwvert length to a multiple of DUMPWIDTH. »/
length = ((length + DUMPWIDTH-1)/DUMPKIDTH) %# DUMPWIDTH}
for {iz=0ji<lengthji+s+) (
if (0==iZDUMPWIDTH) { /% Dump the ascii version and start s !
new line every DUMPWIDTH characteH
if (i >0)¢ |
portdumplasciily
portdump(” nr')s

b)
portdumpl(uitoh(address+i)); /% Also, dump the current address. ®/
portdump(¥:)3

b}

/% Put extra spaces in the middle of each line. */

50

if (0==iZ{DUMPWIDTH/2) && 0 !'= iZDUMPWIDTH) (

portdump(® ")3
}

portdump(ctoh(*(char %) (address+i))); /% Dump each byte individually. %/

portdump(*)3

/7% Insert the current character in the string “ascii.»/

/% If it's not printable, replace it. »*/

asciil iZDUMPWIDTH] = #(char %) (address+i)s

if (asciili/DUMPWIDTH) < SPACE asciil iZDUMPWIDTH] >= DELETE)
asciil iZDUMPRIDTH] = *,'3

}
/% Make sure ascii is printed again at the end of the last line. %/
if(i>0 ¢

portdump(ascii)s

portdump(" n.r");

730 HIEIFIEIEIEIE JIEI I I I I NI I3 1636 69696 I JEIE DI I6 6 H I I 6 6 HEIEFEIE I I I 36 36 6 HHEITE JEIEITEIEI6 26 I 3 I JIE I /
/% Echo a character to the terminal. %/
void echolchar data)

<
char bufl2ls
bufl0l = datas
buflll = NULLS /% Bufl] ends in a null because it's a C string. */
portdump(buf); /% Use portdumpl(]} to output the string. %/
}

7/ R IIEIEIEIE HIEIEIEIE I IE I I FIEI I TN I I 16 HIE I I I I TN N IIIEN I IIEIE TN IIEIIIIE NI I I NI/

/% This routine gets a hexadecimal byte from the terminal.®/
/BRI I EF I TN TN I I NI H NI I N /

char gethex(void)

{
int iy
char string{HSTRLEN + 113
stringlHSTRLEN] = NULLS
for (i=03i < HSTRLEN;++¢i) {
stringlil] = tolower(termin(1)
echo(stringlil);
if (stringli) >= 'a' &8 stringlil <= '§')
continue;
if (stringlil >= '0° 28 stringlil <= '9")
continue;
stringlil = NULL)
break
}
return(atohistring));
)

/T3 TSI H N HHHHEHHEHHHORHHHHHHEHEHEHHEHE /
/7% This routine gets a hexadecimal word (two bytes) from the terminal.»/
/P IEINAEIIEIETEIE I I 2 T T I I6 26 9606 2 H NI I I I 6 HIEIENTE I HEIEI I I I8 6 I I I I DI I I I/

51

unsigned int gethexint(void}

{
int i3
char stringlHEXINTSTRLEN+1];
string[HEXINTSTRLEN] = NULL3
for (i=03i < HEXINTSTRLEN;++i) (
stringli] = tolower(termin());
echol(stringlil)y
if (stringlil >= 'a' 28 stringli] <= '§*)
continue;
if (stringlil >= '0' &8 stringli) <= '9')
continues
stringlil = NULLS
breaks
}
return(atohexintistring)ls
}

7/ FEIEIEIEIEIIEIE NI IEIEIIEN I IIEIE I JIEIE I IENIIINIIN I I I IIIIIIIIIN I I /
/7% Get an integer from the terminal. %/
int getint(void)

{
int i3y
char stringlSTRLEN]s
string[STRLEN] = NULL:;
for (i=03i < STRLEN3++i) {
stringli) = termin();
echol{stringlil)y
if (stringlil < '0° stringli]l > '9') {
stringli] = NULL}
break;
)
}
returnf{atoil(string))y
)

7/ F 36363 IEIEIEIEIE 66 3636 3 33 36 3636 3 32 NI NN IIIIIIIIHEIIIIHHHEIHHHEEE IR /
/% This routine sends character strings to the PRTDATA port. %/
void portdumplchar ¥string)

{
if (!prtconnected}
return;
while (¥string) (
/% Tha terminal is ready when status bit 0 is a one. %/
while{ Y(PRTOUTRDY & input(PRTCTRL)));
output(PRTDATA, ,%string++);
}
)

/I HHEEHHHHHHHHHOHHHEHEHHEHEHHHHHOHHHHHHHHHHHEHEHEHEHHHHHEOHHE
char termintvoid)
{

LR 4

——

while (TRUE) (
/% Bit 1 will be 1 when data is present. Wait for data. »/
if (input(PRTCTRL) & PRTRDY)
break}
)
return{ input(PRTDATA)); /% Data js present, so read it. »/

Pg 2 et sy A T TS N LA v ey
void testinput(void)

{

int ports /% Port number to bae entered from the keyboard.»/
char datas /% Data to be read from that port. »/

portdump("Specify port address to be read (in hexadecimal): ")

port = gathex!); /% Get the port address. »/
portdump("' nr")y
data = input(port)s /% Read from the port. »/

portdump(“Data from port (in hexadecimal): ")
portdump(ctohidata))s
portdump(" n.r" 1}

7/ FEIEIE T 266 I T 6 I JEIE I 1636 I IE I IE I I IEIEIEIEIE I I I 36 IEIEIEIE I IETEIEIEIEIEI I IEIE I I JE I IEIEIEJEIEIEIEIE JEIEIE JE I IEIIE I IEIIE I /

/% This routine outputs a character to a specified port. »x/
7969636636 36 36 36 36 96 96 36 6 6 3636 36 36 36 3666 I JE I F6 I I 36 36 36 JF HIEIE I I I I 2636636 H I IE I I T I I NN N HII I NHINI)

void testoutputi{void)

{

int ports /% The port address. %/
char datas /% The data to be sent to the port. %/

portdump(“Specify port address to be written to (in hexadecimal): ")
port = gethex!)s /% Get the port address. %/

portdump(* n r");

portdump("Specify the data to be sent to the port (in hexadecimal): ")
data = gethex()}

output(port,data)s

53

N. FILENAME NEWIO.S
3 February 19, 1988 newio.s

export imput, output
region code

3 char input(char port);

- input:
h push ix 3There are no local variables.
1d ix,O
- add ix,sp
; 1d Crlix+d) sPut port address in register c.
in alc) 3Get the data from the port.
pop ix jRestore ix to the value it had before this

3sfunction was called.

ret

3 void output (char port, char data);

output:
push ix
1d ix,0 sThere are no local variables.
add ix,sp
1d C,ix+4) 3Put port address in register c.
1d a,(ix+6) 3Put data in register a.
out (c)ra sWrite the data to the port.
pop ix jRestore ix to the value it had before this
sfunction was called.
ret

O. FILENAME START.S
3 FEFIFEIEIEIEIEIEFHTETE I I FEIEIE I I J6 I I 3 I TN I 36 HH6 I I I HEIEIEIE HIEIEIEIEIE JEIETEIEIE JE I 366 I6 F I 6 36 36 IE I JEFE I 36 96

February 19, 1988 start.s

This startup code initializes interrupt vectors and runs START at
reset

to initialize RAM and call the user function main().

The companion link specification file is "spec" which defines
many of the imported symbols. Also see file "mbrk.asm" for the
mbrk() function if you want to use malloc() or calloc().

3 I I I H I II NI I I NN
export START,MBRKPTR

import main,STACKTOP,RAMDATA,ZRAM,ZRAMSZ,IRAM,IRAMSZ ;MRAM

W W W W W e W v e

3 FPEIIEIIIIEI H I I I NI I H I NN HIIIIIIIIEN I

3 Define a variable to track memory allocations in mbrk().

5 369696463696 969696 3 HHEIIE J I HIE I H I IIIIEIENII I F I NI I I NI I NN IIEN NI
region ram

MBRKPTR ds 2 3 (char #)} to available memory

§ FEFIE I IHII I FIIIEIEIEIE N6 IIIEIIEI I IEIE I NI I NI FI NI I

3 Reset code must be linked to address 0.
§ FEIEIE I 6T IEIEHIIENIEI 6 69626 96 6 9696966 96 96269636 JEIE-J6 6 6 I H6 3096 6.6 96 236 3636 DI 36 JEIETEHI6 96 96 I I JEIEHH 6

region reset

1d sp, 10 STACKTOP 3 initial stack pointer (0x10000 as 0)

jp START 3 initial execution address

org 0x08
ARESTART; 3RESTART LOCATION 1

jp START

org 0x10
BRESTART: 3RESTART LOCATION 2

ip START

org 0x18
CRESTART: 3RESTART LOCATION 3

jp START

org 0x20
DRESTART: 3RESTART LOCATION &

ir START

org 0x28
ERESTART: 3RESTART LOCATION 5

jp START

org 0x2C
FRESTART: 3RESTART LOCATION C

i START

org 0x30
GRESTART: 3RESTART LOCATION 6

P START

org 0x34
HRESTART: JRESTART LOCATION B

jp START

org 0x38
IRESTART: SRESTART LOCATION 7

jp

START

55

T el)

org 0x3C
JRESTART: 3RESTART LOCATION A
e START
org 0x66
NONMASKI : $NON-MASKABLE INTERRUPT
i START

3 JEIEIEIEIEIEIEIEJEIIEIEIE JEIE I IE I T I JEIEJEIE IEIE I I IEIEIEIEIE I IEIEI6 6 FEFEIEIE 6 I6 T IEIE IE I I IEJEFE I IEIEIEI I

’$ This code can be anywhere; the reset code jumps to it.

§ FEPEIEIEIEIETEIEHIE I HIEIEIH NI I I IEHIEIEIEH N IIIIIIIEFIIEIEI I I I IIEII I NI I
. region code

START 1d ix,0 3 end of stack frame chain

1d hl,MRAM 3 initialize memory allocator

| 1d (MBRKPTR) ,hl
A § NI I I I I I I NI I IHHIHHIHHEHEHHHEHINE
b 3 Zaro out uninitialized RAM.
E 3 It is assumed here that ZRAMSZ > 1 but this is guaranteed

3 as long as MBRKPTR (above) is defined in region ram.
§ 36963636 JEII6 3 36 36 36 JEHEE H I IEIHIEH I I I3 F I NI N IIH I I IIIIIIIIIN I

1d hl,ZRAM 3 Zero ZRAMSZ bytes here

1d (hl),0 s zero first byte

1d de,ZRAM+1 3 repeatedly zero other bytes
¢ 4 1d bc,ZRAMSZ-1
L~ 1dir

§ FFEIEIEIEIEIEIEN I IEIEIE I I 366 IEIEIEIEIEIEI I IEIE I I I I IEIEIEIEIEIE I 6 I I IEIEIE N IEIIEIEIE I IEHII I

3 Initialize other RAM from ROM.
§ FEIEIEIEIEIEI6 636 I IEI6 3 3 I IE I I I I IIE I JEIEJ I IEIIEIE I I 636 3 HIEH IIIIIEN FIIEII I I

y
h 1d h1,RAMDATA

1d de,IRAM
1d bc ,IRAMSZ
1d ab
or c
jr Z,none
1dir
none:
§ JEIEIE I I NI IIIEI I HIEIEIIEIE NI NI NI IR I NI I
3 Invoke main() with no arguments.
S g e e
call main 3 any return value is "int” in de
done: halt 3 halt if main returns

B8 22 1 e T L T e

To vector an interrupt to a C function, you must go though

a register save routine like the one shown here.

If the "-r exx" option is being given to the command line,

then registers bc' de' and hl' need not be saved and restored

since the compiler will make no use of them. The compiler

does not use af' in any case.

§ I IEIE I S 3 IO
region code

W W e we e e

s INTERRUPT
3 push af } save registers
) push bec

56

W W MR WR We e We W W W we e W We wr W W WY W we We e e

push
push
push
push
exx

push
push
push
XX

call
axx

pop
a8xx

§33333

ei
ret

hl
ix
iy
be
hl

cfen

&

iy
ix
hl
de
be
af

3 call some C function

3 restore registers

3 return from interrupt

57

P. FILENAME GLOBAL.C
/% April 19, 1988 global.c %/
#include "solareva.h'

char prtconnected; /% TRUE is there is a terminal attached,
FALSE, otherwise. %/

struct datetime clock; /% The most recently read time will be stored
here. */

struct idatetime waketime; /% The most recently read integer version of
time will be stored here. %/

58

. Q. FILENAME CLOCK.C
m /% April 19, 1988 clock.c */

#include “solar.h"
#include "convert.h"
#include "inout.h"
#include "solareva.h"

h #include "global.h"
#include "newio.h"
-
| - void clockint(struct datetime ¥clock,struct idatetime *iclock}s

void clockread(struct datetime %your_clock)s

char clockcompare(struct idatetime %*clockl,struct idatetime ¥clock2}s

b - void clockset(struct datetime *clock)s

. void clocksum(struct idatetime *result,struct idatetime %clockl,
struct idatetime *clock2)s

void dump_clock(struct datetime *clock);

void rtclvoid)s

void show_waketime(struct idatetime Jwaketime);

void testtimeout(void)s

char timeoutlint delaytime,int measurels

7 F6636 3636 96 3636 36 26 FE 6 HEI 06 36 6 36 36 96 36 36 26-HE 636 36 FIE I I 0636 6 JE I I3 H I I T3 D36 I3 JE M I I I II I NI I I I K H N/
/% Convert a datetime structure to an idatetime equivalent., This allows
arithmetic to be performed on dates and times. %/
- void clockint(struct datetime *clock,struct idatetime *iclock}
<

iclock->imonth
iclock->idate
iclock->ihour
iclock->iminute
iclock->isecond

bed_int{clock->month);
bed_int(clock->date)s
bed_int(clock->hour};
bed_int(clock->minute s
bed_intlclock->second)s

b
7 FR I I6 3636 36 36 36 J6I D6 F T T 6366 66T 3636 I DI I I I I 3 3 T FT 36 HHEI JIEI I NI J I H I IHH NN/
/% This routine fills a clock structure with the current date and time. %/
void clockread(struct datetime *your_clock)
{
PY int i3
I
i =03
do (
your_clock->second = input(SECONDS)3
your_clock->minute = input(MINUTES)3
b your_clock->hour = input!{HOURS);
f... your_clock->date = input(DATE);
. your_clock->month = input(MONTH)
} while (your_clock->second t= input(SECONDS) && ++i <= 10 * TRIES);
)
L) 7039363038336 636 569036 3636 26 36060656 3636 6 336 36 6 63633636 D6 36069606 36 3636 36 36 36 6636 3636 3 FEII6 3606 36 36 3696 366 36 36 36 3 I JE I NI/
® /% Compare two clock times. Return TRUE if the first is later than the second,

59

Ty

FALSE otherwise. */
char clockcomparelstruct idatetime ¥clockl,struct idatetime Xclock?2)
{

int difference;

difference = clockl->imonth - clock2-~>imonths
/% This logic allows you to decide January comes after December. ¥/
if ((difference + 12) Z 12 < 6
88 difference '= 0) return(TRUE)}
if (differ~ ..@ = 0) return(FALSE)}
if (clockl->idate < clock2->idate) return(FALSE};
if (clockl->ihour < clock2->ihour) return(FALSE);
if (clockl->iminute < clock2->iminute) return(FALSE);
if (clockl->isecond < clock2->isecond) return(FALSE)}
return(TRUE);

/33336 962 H I I 6 I 6 I T IEIFEIIE I H NI IIEIII NI I I I NI IINIIEN FIIIEI NI NI NN /
/% This routine sets the real time clock. #/
void clockset({struct datetime *clock)

{
int month, date, hour, minute, second, maxdate;
char outstr[STRLEN];
static char crll = "npr'y

while (TRUE)
portdump("Month? (1-12) ™I
month = getint()s
if (month >= 1 &2 month <= 12}
breaks
portdump{“Invalid month. Re-enter it..n.r");
b
portdumpicr);
maxdate = (month == ¢ month == month == month == 11) ?
30 : 31
maxdate = (month == 2) 7 28 : maxdate)
while (TRUE) {
portdump("Day? (1-")3
itoa(maxdate,outstr);
portdumpl(outstr);
portdump(*"))3
date = getint();
if (date >= 1 2& date <= maxdate)
break
portdump(" n rInvalid date¢. Re-enter it.nir");
b
portdumpicr))
while (TRUE) {
portdump("Hour? (0-23) "3
hour = getint();
if (hour >= 0 && hour <= 23)
break)
portdump("Irnvalid hour. Re-enter it.nr")y
)
portdump(crls
while (TRUE) {

60

e ¥ . e . . L . g

- ey

.o
9

} ’

L

! .

)

b

portdump("Minute? (0-59) ")
minute = getint())
if (minute >= 0 &8 minute <= 59)
breaks
portdump("Invalid minute. Re-enter it.\n.r")y
b}
portdumplcr)s
while (TRUE) {
portdump(“Second? (0-59) "),
second = getint())
if (second >= 0 && minute <= 59)
break
portdump{"Invalid second. Re-enter it.n.r")j

}

portdumplcr)s

clock~>month = int_becdimonth)s
clock->date = int_bcd(date)s
clock=->hour = int_becd(hour)s

clock->minute = int_bediminute)s
clock->second = int_bed(second)s
output({MONTH,clock->month);
output(DATE ;clock->date)s
output(HOURS ;clock=->hour)}
output(MINUTES ,clock->minute);
output(SECONDS ,clock->second)}

/363 J I I 6 I IIEIE I I FIEI NI IEIE I I I IEEI6 H H I FEI NN NI NI I I I H NI I NI IR/
/% Find the sum of two calendar periods. %/
void clocksum(struct idatetime %*result,struct idatetime ¥clockl,

struct idatetime %clock2)

int maxdate; 7% The last valid date in the month. */

result->isecond = clockl->isecond + clock2->isecond;

result->iminute = result->isecond / 60;

result->isecond Z= 603

result->iminute += clockl->iminute + clock2~->iminutes;

result~->ihour = result->iminute / 603

result->iminute %= 603

result->ihour += clockl->ihour ¢+ clock2->ihour}

result->idate = result->ihour / 24;

result->ihour 7= 24;

result->idate += clockl->idate + clock2->idate;

result->imonth = 1 ¢+ (clockl->imonth + clockz->imonth - 1) % 123

maxdate = ((result->imonth == §) (result->imonth == 6)
(result->imonth == 9) (result->imonth == 111} ? 30 : 313

7% The real time clock makes no provision for leap year, so leap years

are ignored in this program (sigh'!) %/

maxdate = (result->imonth z= 2) ? 28 : maxdates

result->imonth 4= (result->idate - 1) / maxdates

result->idate = 1+ (result->idate - 1) 7 maxdate:s

result->imonth = 1 + (result->imonth - 1) % 123

6!

al "]

-

/T FIIEIIIIIE NI I I IIII I I I I IFIIEIIIIIII I I NI NI H III I NI NN I I I NI NI/
/% Print a clock structure or dump it to the output port. %/
void dump_clockistruct datetime *clock)
{
if (prtconnected) {
portdump("Month == ")j
portdump(bed_asclclock->month))
portdump("” Date ==)3
portdump(bed_asciclock~>date));
portdump(” Hour == ")j
portdump(bed_asclclock->hour))}
portdump(" Minute == ")}
portdump(bed_ascl(clock->minute))
portdump(" Second == ")j
portdump(bed_asc(clock->second))s
portdump(”. nr")s

7 FF I3 2 JI FEIE I HENEIEIE NI IEIEIIE T I 3363636 36 6 JE I I IEIENE TN IEI I I I IEIEI6 36 36 36 JE T IEIEIIEN I I IE I IEIE I I NI ININ S
/% This routine is a menu-driven collection of routines for testing the

clock functions. %/
void rtclvoid)

{
char datas
while (TRUE) {
portdump(™.n rReal time clock functions.nrnr")s
portdump(™A Read clock.:nr");
portdump("B Set clock..n.r")}s
portdump(”C Test timeout() function..nr"jj
portdump{"Z Return to main mernu.nr")j;
data = termin()j
echo(data)s
portdump(".n r")}
switch (data) (
case 'a': case ‘A':
clockread(8clock)}y
dump_clocki{ &clock)
break
case 'b': case ‘B':
clockset(&clock)y
breaks
case 'c': case 'C':
testtimeout()
breaks
case 'z': case 'Z'":
return;
default:
portdump("Use a valid letter please.'\nr"))
breaks
b}
}
b}

62

R~ A

/33636 3 JEHEI I I I I F I I NI NI I 6 3 I TN IE VI3 2 J M FENIEI TN I IEFEIIE NI I I I I H NN I IIIIN /
/% This routine displays the wake-up time. %/
void show_waketime(struct idatetime *waketime)
{
char sISTRLEN]s /% String for itoa() routine. »*/

portdump(“Hake-up time is: ‘'‘nrMonth = “);
portdump(itoatwaketime~>imonth,s));
portdump(" Date = ")3

portdump(i toa(waketime~>idate,s));
portdump(" Hour = ")3

portdump! i toa(waketime~->ihour,s))s
portdump(® Minute = ")

portdump(itoalwaketime~>iminute,s)))
portdump(" Second = ")3

portdump(i toalwaketime->isecond;s)
portdump(":nr");s

/36369626 336963 I M I 6 HIEH J I I I I36 HEIIEHIEIEIETEIE 36 3269 26 32 I I HIE 636 36 3 I 36 I FIIN HH NN 36 /
7% This routine is used to test the timeout() function. %/
void testtimeout(void)

{
char data, /% A character entered from the keyboard. %/
unitss /% The units of delay. %/
int delay} /% The number of units of delay. */

while (TRUE) {
portdump(“Test of timeout() function.n'rinr")s
portdump(“Specify time units for delay:nrnr"l}
portdump(”A Hoursnr“j
portdump("B Minutes nr"js
portdump("C Seconds'nr");
portdump("Z Return to previous menu.in:r")j

data = termint);
echoldata)s
switch (data) {
case 'a': case 'A':
units = HOURS)
breaks
case 'b': case 'B':
units = MINUTES)
break}
case 'c': case 'C':
units = SECONDS;
break}
case 'z': case 'Z':
return;
break}
default:
portdump("Use a valid letter please.:nr");
breaks
)
portdump(” n rHow many units of delay do you want?nr")}
delay = getint();

63

T

portdump(” n rStarting delay: nr"))
clockread(&clock)

dump_clockt dclock)
timeoutidelay,units)

whilel ?timecut(NULL,NULL))3
portchmpt “Delay complete. nr);
echot(BELL);

clockreadt &clock)3
dump_clock(&clock J3

/P IS NI I 36 SN JIE I I NI NI I I SN SIS 6/
/7% This routine is used to initiate a timeout sequence, and to test for
completion. To set the desired delay time, the parameter "delay"
should be non~-zero. To test for completion, “delay"” should be zero (NULL).
Hhen setting the delay time, the function always returns TRUE. When
testing for completion, it returns TRUE if the time has elapsed, FALSE
otherwise. %/
char timeoutlint delaytime,int measure) .
/% “delaytime' is the length of the timeout. »x/
/7% "measure” is the unit of measure of time. This can be
MONTH, DATE, HOURS, MINUTES, or SECONDS. %#/

<
static struct datetime timenow:
static struct idatetime itimenow, waittime;
clockread(2timenow))
clockint(&timenow,&itimenow))
if (delaytime == NULL) { /% If delaytime == NULL, then check to
see if timeout period is over., ¥/
returniclockcomparel(&i timenow, waketime})y
} else { /% Otherwise, set the wakeup time. %/
waittime.imonth = waittime,idate = waittime.ihour
= waittime.iminute = waittime.isecond = 03
switchimeasure) {
case MONTH:
waittime.imonth = delaytime;
breaks
case DATE:
waittime.idate = delaytimas
break
case HOURS:
waittima.ibour = delaytime;
break)
case MINUTES:
waittime.iminute = delaytime;
break}
case SECONDS:
waittime.isecond = delaytime;
break)
b}
clocksum(dwaketime,2itimenow,waittime)y
show_waketimel swaketime)}
return{ TRUE)
)
}

-

T T

R. FILENAME DELAY.S

3

#define

May 09, 1988 delay.s

LOOPCOUNT 100

3 Delay for n thousands of a second.
3 void delay(n)

3 int

delay:

LOOP1:
LOOP2:

e we e e we

ns The number of thousands of seconds of delay desired.

export delay
region code

push ix 3 t=15T.
3 Cause ix to point to the first parameter.
1d ix,% 3 t=14T.
add ix,sp 3 t=157.
1d c,(ix+0) 3 t=19T.
1d b,(ix+l) 3y t=19T.
1d de, $LOOPCOUNT 3 t=10T,
dec de 3 t= 6T. Count down to zero in LOOPZ.
1d a,d 3 t= 4T,
or e 3 t= 4T,
bl:) nz,L00P2 3 t=107. Inner loop t=24T.
dec be 3 t= 6T. Repeat LOOPl until time is up.
1d asb 3 t= 4T.
or c 3 t= 4T,
ip nz,L00P1 3 t=10T. Quter loop t=(34+24%LOOPCOUNT)T.
pop ix 3 t=14T. Restore ix to its initial value.
ret 3y t=10T,
5 Total Delay ={206+{34+2G%LO0PCOUNT }*n)T.

Solve n ms = (106+(34424%LO0OPCOUNT)%n)T with T = 1/¢ = 400 ns to
get n = LOOPCOUNT. § = 2.5 MHz. For n=z100, LOOPCOUNT = 100, leading
to a delay of 97.4 ms for an error of 2.6Z%. For n=l,

this leads to a delay of 1.016 ms instead of the 1 ms required, for
and error of 1.6Z%.

- —

L)

S. FILENAME SYMBOLS

RAMDATA (specfile)
ENDROM (specfile)
IRAM (specfile)
IRAMSZ (specfile)
ENDDATA (specfile)
ZRAM (specfile)
ZRAMSZ {specfile)
MRAM (specfile)
MRAMSZ (specfile)
STACKTOP (specfile)
START code

main code
MBRKPTR ram

_fltus ram
cellnum ram
version code
memory_dump code
testtimeout code
show_waketime code

itoa code

atoh code

ctoh code

atoi code
_stod code
printf code
uitoh code

dump code
atohexint code

i ram
waketime ram
clockcompare code
clocksum code
clockint code
clockset code
c_bits ram

_vsgn code
timeout code
dump_clock code
_ultos code
output code
currentout ram
clockread code
clock ram

rtc code

echo code
inithardware code
_muld code
currentdata ram
oldcurrent ram
voltdata ram

por tdump code

input code
retrieve code

cell ram

absol
absol
absol
absol
absol
absol
absol
absol
absol
absol
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc

66

RAMDATA 818bh
ENDROM a000h
IRAM a000h
IRAMSZ 8h
ENDDATA 8193h
ZRAM a008h
ZRAMSZ 106bh
MRAM b073h
MRAMSZ 250h
STACKTOP 10000h
START 69h
void main()) 199h
MBRKPTR a008h
unsigned char _fltus3b072h
int cellnum; a02dh
void version()s 93h

void memory_dump()3 aah
void testtimeout!(); ce’h
void show_waketime(}; bflh
unsigned char *itoal);1dfzh
unsigned char atoh();1965h

unsigned char ®ctohl)3lcbch
int atoil)3 1b4ah
int _stod()3 3655h
int printf(); 360fh
unsigned char *uitoht)j;ledé6h
void dump()3 edsh
unsigned int atohexint()jiladeh
int i3 a035h
struct waketime; boé4h
unsigned char clockcompare(}3315h
void clocksum(}; 735h
void clockint()s ladh
void clockset(); 42fh
struct xc_bits; a044h
_vsgn 7a28h
unsigned char timeoutt);dfch
void dump_clock()3 a77h
_ultos 36f7h

int output(); 1952h
float currentouts a03eh
void clockread()3 264h
struct clocks b05dh
void rtcl)3 b3dh
void echol)y 1082h
void inithardware()} 1436h

int _muldl)y 47e3h

unsigned char currentdataja038h
unsigned char oldcurrent; a043h
unsigned char voltdata; a037h
void portdump(); 13leh

unsigned char input()31942h
void retrievel)} léeeh
int cells; a031h

oh
oh
oh
oh
oh
oh
oh
oh
oh
oh
42h
50h
oh
oh
Oh
12h
1bh
f1lh
deh
9ah
l6h
6fh
3bh

1dh
bsh
23h
2ah
oh
oh
Ze6h
8bh
lah
48h
oh
bh
127h
aéh
2%
12h
oh
25h
oh
bah
4ch

9ch
Oh
oh
oh
97h

71h
Oh

manu
_mulves
_dtos
oldvolt
cnvgncdone
gethexint
testinput
delay
_modswm
experiment_data
exacute
bed_asc
bed_int
prtconnec ted
int_bed
termin
getint
testoutput
gethex
checkprt
_divmws
command
voltage
tolower
voltout
row
_subd
_stol
_round
_tstd
_sltoa
_shrul
_shlul
_sltos
_tstmd
strlen
strchr
_stosgl
_shrull
_shlull
_sgltos
_addd
_ultoa
_ltod
_ltos
_addul
_dblprec
_uprint

code
code
code
ram

ram

code
code
code
code
ram

code
code

ram
code
code
code
code
code
code
code
data
ram

code
ram

ram

code
code
data
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
data
code
code
code
code
code
code
code
code
code

reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc

67

unsigned char menu()} f4h 2ah
_—mules 993h bh
int _dtos()s 369ch 17h
unsigned char oldvoltia0azh oh
unsigned char cnvgncdones;a03%h oh
unsigned int gethexint();1187h 6eh
void testinput()y 138fh afh
void delay(); 1f6fh ch
_modswa %a7ch 14h
struct experiment_dataélo0Oh(¢8h|ja046h
void executel) 152ch 2eh
unsigned char %bcd_ascl)ilbeOh 4ch
int bed_int()3 1c49%h 60h
unsigned char prtconnectedi;b05ch Oh
unsigned char int_bcd()j;1d6dh 8%h
unsigned char termin()31373h agh
int getintt) 126ch 84h
void testoutput()3l3edh cOh
unsigned char gethex()3l0a%h 57h
unsigned char checkprt()jed2h 17h
_divims 1fach 16h
struct command; a003h oh
int voltage:; a02fh Oh
unsigned char tolower!()jleaah ach
float voltout; a03ah Oh
int rows; a033h oh
int _subd(3 450% éch
int _stol(); Zeebh 23h
int _round; a004¢h oh
int _tstd() 3feOh 12h
unsigned char %_sltoa()35577h 14h
int _shrull(); 6306h 1ch
int _shlul(); 63f2h 2ah
_sltos 3é6doh 28h
int _tstmd(}: 4036h 19h
int strlen(); 5543h 9h
unsigned cliar %strchr(}35507h ch
int _stosglt) 7329h dh
int _shrull()s 57eah 16h
int _shlull()s 59%eah 2ah
int _sgltos(); 750fh 21h
int _addd(); %106h 30h
unsigned char %_ultoal)356e3h 16¢h
int _ltod() 3c9dh eh
int _ltos()y 3a45h eh
int _addult }; 64d5h 37h
int _dblprecs 2006h Oh
int _uprint(); 2048h 36h
int _cmpd() 456bh 7%
_cmpl 6b35h dh
int _negd()} 4095h 27h
_negl 7allh ah
int _addull()s Shelh 3eh
int _mulul(); 65cfh Gk
_mulll 796dh 18h
int _divd() 48déh ach

Oh

_dtol
uctype
_normd
_nrmul
_norms
_ecvt
_mylull
_modsll
_modull
_mulwul
_mulwsl
_mOduw
_dtosl
_dtoul
_divul
fpute
_fevt
_nrmull
_zerod
_dbltoa
_dbltod
_dtodbl
_divull
_divlls
_diviawu
_divllu

code
const
code
code
code
code
code

code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code
code

reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
raeloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc
reloc

68

int _dtol()s

unsigned const char uctype¢8lh|j7b54h

int _normd()}
int _nrmull);
int _norms()3

unsigned char %_gcvt()i3bech

int _mulull();
_modsll
_modull
_mulwul
_mulwsl
_modum
_dtosl

_dtoul

int _divul()s;
int fputc()s

unsigned char *_fcvt()3;3c29h

int _nrmull()}
int _zerod()}

unsigned char *_dbltoal)3;3718h

int _dbltod()
int _dtodbl()}
int _divull()s
_divlls
_divwy
_divlilu

Id4ah 26h
Gaa%h eh
6568h %1h
5181h eh

2bh
Selch Sah
78ezh 29h
7882h ch
79a%h 13k
79¢clh 1bh
4a6lh ch
3c66h 24h
3c82h 25k
é6azlh 5dh
7a38h 10h

35h
Bd4sh 49h
405¢ch 1fh

16h
6elch 22h
6b52h dh
6053h 71h
7748h 2ch
1f8fh ch
7795h ch

Oh

-

APPENDIX C. SOLAR CELL ARRAY TEST CIRCUIT CODE

A. FILENAME CELLTEST.C

7 FIEHIEIIEIEIIEIE I IEIEIE I IEIEHIEIEIEHIEIEIEIEIEIE I IEFETEIENIEIEIIEIIE I I FTEIIEIIIIIE I X2 I I IEIF I FIEN T I3/

/% May 28, 1988 Celltest.c

Program for testing solar cell array I-V characteristics »/

#include "solareva.h"
#include "newio.h"
#include "convert.h”
#include "delay.h"

#define ARRAYSZ 1
#define START 3

int cellnum, voltage, cell, row, i
char voltdatas

char currentdatas

char cnvgncdones

float voltout;

float currentout;

char oldvolt)

char oldcurrent}

void execute(void)s
void retrieve(void);

struct PORT1_B {
unsigned int un: k3)
unsigned int strten: 23
unsigned int celladd: 33
)} command = {0,0,0};

struct C_PORT (
unsigned int hi: 53
unsigned int bits: 23
unsigned int lo: 13
) %c_bitss

struct data_pt (
char voltagept;
char currentpt;
) experiment_datal256] (8]

void executel(void)
{

/% number of test cell %/
#define STOP 0 /% stop */
/% high assertion for two bits (convergence) »/

/%PortB-1 Bit field »/
/%unused bitx/

/%a/d start conversion signal¥/
/%xsolar cell numberx/

/% initialize PortB_1 %/

/7%Bit field for Port C-2 input »/
/*unused high bitsx/

/%bits Cl and C2%/

/%unused low bitsx/

/%Array structure for data storagex/
/%*vol tage*/

/%current*/

/%row/colum for datax/

69

row=03
oldvolt=0}
oldcurrent=03

command.celladd=cellrnum;
output(PORT1_CTRL, command)}

for (voltage=03 voltage < 2563 voltage++){
output(PORT1_DA, voltage)

command.strtcn=START}
output(PORT1_CTRL, command);
command.s trtcn=STOP;
output(PORT1_CTRL, command)s
delay(1)}s

while (TRUE){

crwvgnedone = input(PORTC2)3

c_bits = (struct C_PORT %)(&cnvgncdone);

if (c_bits->bits==0x03)
break;

voltdata = input(PORT2_ADV);
currentdata = input(PORT2_ADC))

if((voltdata == oldvolt) && (currentdata

continues

iftoldvolt = 01(
ifloldvolt < voltdata)
continues

oldvolt=voltdatas
oldeurrent=currentdatas;

if(voltdata == 0)
voltage = 2553

/7% Data Storage %/
experiment_datalrowllicellnum].voltagept
experiment_datalrowllcellnum].currentpt

rowé+s

70

for (callnum=0; cellnum < ARRAYSZ; cellrnum++)(

/%loop for test cellx/

/%storage counter*/
/*initialize comparison variable¥*/
/%initialize comparison variablex/

/%set address bitsx/
/#initialize PortB-1x/

/*input voltage ladderx/
/*output cell bias voltagex/

/%Start Convergence pulsex/
/%for both ADC's*/
/%do itx/

/%End Start Convergencex/
/%pulse for both ADC's¥/
/%do it®/

/%1 ms delay for settling*/
/%EQC check loop»/
/*assign PORTC2 word*/
/%looking for EOC bits¥x/

/*bits C1l and C2 must be high¥/
/%When EOC bits high, cont.»/

/*collect voltage infox/
/¥%collect current infox/

== oldcurrent))

/%ignore transistor bias¥/
/*and multiple datax/

/%smooth curve, deletex/
/¥voltage surges*/

/%*reset comparisoni/
/*reset comparison/

/7%1sc reached¥/
/*end loopx/

voltdatas
/%stores voltage datax/
currentdata;s
/#stores current data¥/
/%increment array rowk/

ﬁﬁ-vr,v
o

)
}
voltage=0; /%turn off biasx/
output(PORT1_DA, voltage); /%do it/

b
/36366 FEIEI T IEIEN I NI IEIEIEII I I I NI IIEIEN I I I IEIIEI I I I HI I J I I I I DI I I 36 2 I/
/% routine to retreive data from RAM »*/
void retrievelvoid)
<
printf(“Specify cell numbers 0-7. ") /¥hich cell data?x/

cell = getint()s /%get cell number from terminalx/
printf(".nr")y
printf("Zd,/dnr",2,2); /%disc file output headerx/

for (120} i<256 &2 ((experiment_datalillcelll.voltagept '= 0}
(experiment_datalillcelll.currentpt = 0));3 ++i){

/%loop prevents collecting data past end of filex/

voltout = (floatlexperiment_datalillcelll.voltagept % .0041}
/%floating decimal at .0041 mv per stepx/
currentout = (floatlexperiment_datalillcelll.currentpt * .00117;
/%floating decimal at .0117 mv per step andx/
/%division by 9.9 ohms to current*/

printf{“/Zf,", voltout)s /*output voltagex/
printft"/Zf,", currentout); /%output currentx/
printf{"Yfnr", 0.0); /*disk file trailerx/
}
printf("Zd,”d,”d",30,30,30); /%disk file end parametersx/
}
71

K
E APPENDIX D. SAMPLE SILICON SOLAR CELL TEST DATA
A. FILENAME SILICON.DAT
) 2,2
. 0.524800,0.000000,0.000000
_ 0.524800,0.001170,0.000000
0.524800,0.002340,0.000000

0.524800,0.003510,0.000000
0.524800,0.004680,0.000000
0.524800,0.005850,0.000000
- 0.524800,0.007020,0.000000
- 0.524800,0.008190,0.000000
;‘ 0.524800,0.009360,0.000000
0.524800,0.010530,0.000000

] 0.524800,0.011700,0.000000
0.524800,0.012870,0.000000
0.524800,0.014040,0.000000

_ 0.524800,0.015210,0.000000
Li 0.524800,0.016380,0.000000
ol 0.524800,0.017550,0.000000
0.524800,0.018720,0.000000

. 0.524800,0.019890,0.000000

[0.524800,0.021060,0.000000

. 0.524800,0.022230,0.000000
0.524800,0.023400,0.000000
h 0.524800,0.024570,0.000000
0.524800,0.025740,0.000000

- 0.524800,0.026910,0.000000
0.524800,0.028080,0.000000
0.524800,0.029250,0.000000
0.524800,0.030420,0.000000
0.524800,0.031590,0.000000
0.524800,0.032760,0.000000
0.520700,0.033930,0.000000
0.520700,0.035100,0.000000
0.520700,0.036270,0.000000
0.516600,0.037440,0.000000
0.516600,0.038610,0.000000
0.512500,0.039780,0.000000
0.512500,0.040950,0.000000
0.512500,0.042120,0.000000
0.508400,0.043290,0.000000
0.508400,0.044460,0.000000
0.508400,0.045630,0.000000
0.504300,0.046800,0.000000
0.504300,0.047970,0.000000
0.504300,0.049140,0.000000
0.500200,0.050310,0.000000
0.500200,0.051480,0.000000
0.500200,0.052650,0.000000
0.496100,0.053820,0.000000

72

————

0.496100,0.
0.492000,0.
0.492000,0.
.492000,0.
.487900,0.
.487900,0.
.487900,0.
.483800,0.
.483800,0.
.483800,0.
0.479700,0.
0.479700,0.
J3.475600,0.
0.475600,0.
0.475600,0.
0.471500,0.
0.471500,0.
0.467400,0.
0.467400,0.
0.467400,0.
0.463300,0.
0.463300,0.
.463300,0.
.455100,0.
.455100,0.
.451000,0.
.451000,0.
.451000,0.
.446500,0.
.446900,0.
.442800,0.
.438700,0.
.638700,0.
.4364600,0.
.%30500,0.
.431500,0.
.430500,0.
.422300,0.
.422300,0.
.422300,0.
.414100,0.
.414100,0.
.405900,0.
.397700,0.
.385400,0.
.377200,0.
.360800,0.
.336200,0.
.295200,0.
.028700,0.
.000000,0.

[= 2 =T = i B = I = Y = |

OO0 00000000 O0DDDODOO0OODO0DODO0ODOLODOODOODOODODOOO

30,30,30

054990,0.000000
056160,0.000000
057330,0.000000
058500,0.000000
059670,0.000000
060840,0.000000
062010,0.000000
063180,0.000000
064350,0.000000
065520,0.000000
066690,0.000000
067860,0.000000
069030,0.000000
070200,0.000000
071370,0.000000
072540,0.000000
073710,0.000000
074880,0.000000
076050,0.000000
077220,0.000000
078390,0.000000
079560,0.000000
080730,0.000000
081900,0.000000
084240,0.000000
085410,0.000000
086580,0.000000
087750,0.000000
088920,0.000000
090090,0.000000
091260,0.000000
092430,0.000000
094770,0.000000
095940,0.000000
098280,0.000000
099450,0.000000
100620,0.000000
101790,0.000000
102960,0.000000
1064130,0.000000
105300,0.000000
107640,0.000000
108810,0.000000
112320,0.000000
115830,0.000000
119340,0.000000
122850,0.000000
126360,0.000000
129870,0.000000
131040,0.000000
132210,0.000000

73

[

LIST OF REFERENCES

Green, Martin A., Solar Cells: Operating Principles, Technology, and System Appli-

cations. Prentice-Hall, Inc., Englewood Chffs, N.J., 1982.

Rauschenbach, H. S., Solar Cell Array Design Handbook, Volume 1. Jet Propulsion
Laberatory, California Institute of Technology, Pasadena, Ca., Publication SP
43-38, Vol.1, October 1976.

Anspaugh, Bruce, A Verificd Technique for Calibrating Space Solar Cells. Confer-
ence Record of the 19th IEEE Photovoltaic Specialists Conference, 1987. IEEEL,
New York, N.Y., 1987, 542-547.

Tada, H. Y., J. R. Carter, Jr., B. E. Anspaugh, and R. G. Downing, Solar Ce!! ra-
diation Handbook. Jet Propulsion Laboratory, Pasedena, Ca., Publication 82-69,

November 1982.

Private communication with Lt. S. Sage, N\aval Postgraduate School, Monterey,
Ca., April 1988.

Statler, R. L., and D. Il. Walker, N7S-2 Solar Cell Experiment After Two Year in
Orbit, The Conference Record of the Fourteenth Photovoltaic Speicalists Confer-
ence, 1980. IEEE. New York, N.Y., 1980, pp.1234-1239.

Trumble, Terry M., and Fred Betz, Evaluation of a Gallium Arsenide Solar Panel on
the LIPS II Satellite, The Conference Record of the Seventeenth Photovoltaic
Specialists Conference, 1984, 1IEEE, New York, N.Y., May 1984, pp.1108-1111.

Gussenhoven, M.S., Ed.,, CRRES'SPACERAD Experiment Descriptions. Space

Physics Division, Air Force Geophysics Laboratory, Hanscom AFB, Ma. Septem-
ber, 1984.

74

10.

11

13.

14.

—
N

16.

17.

18.

19.

Morris, Lt. Robert K., New Insight into the LIPS-1I GaAs Solar Panel Performance,
The Conference Record of the Eighteenth Photovoltaic Specialists Conference,
1985. IEEE, New York, N.Y., 1985, 688-691.

Suppa, E. G., Space Calibration of Solar Cells. Results of 2 Shutile Flight Missions,
The Conference Record of the Seventeenth Photovoltaic Specialists Conference,
1984. IEEE, New York, N.Y., 1984, 301-305.

Callaway, Robert K., An Auronomous Circuit for the Measurement of Photovoliailc
Devices Parameters, M.S. Thesis, Naval Postgraduate School, Monterey, Ca., 1986.

National Semiconductor Corporation, NSC800 High-Performance Low-Power
Microprocessor, Santa Clara, Ca., 1983.

Wallin, Jay W., Microprocessor Controller With Nonvolatile Memory Implementa-
tion, M.S. Thesis, Naval Postgraduate School, Monterey, Ca., 1985.

National Semiconductor Corporation, NSC8104 RAM-1;0-Timer, Santa Clara,
Ca., 1984.

National Semiconductor Corporation, MM38167 Microprocessor Compatible Reul
Time Clock, Santa Clara, Ca., 1984.

INTEL Corporation, 27C64,87C64 64K /8Kx8; CHMOS Production and UV
Erasable PROMS, Santa Clara, Ca., June 1986.

Radio Company of America (RCA), CDM6264 CMOS 8192-Word by 8-Bit LSI
Static RAM, Somerville, N.J., January 1985.

National Semiconductor Corporation, DACO800 §-bit Digital-to-Analog Converter,
Santa Clara, Ca., 1982.

Harris Semiconductor Corporation, HI-506A4 Single 16 Differential 8 Channel
CMOS Analog Multiplexer, Melbourne, Fl., 1985,

75

21.

National Semiconductor Corporation, 4DC0809 8-Bir Microprocessor Compatible
A D Converter with 8-Channel Multiplexer, Santa Clara, Ca., 1982.

Cameron, Charles B., Conirol of an Experiment to Measure Acoustic Noise in the
Space Shutrle, M.S. Thesis, Naval Postgraduate School, Monterey, Ca., 1988.

Gold, Don W., High Energy Electron Radiation Degradation of Gallium Arsenide
Solar Cells, M.S. Thesis, Naval Postgraduate School, Monterey, Ca., 1986.

Young, Thomas, Linear Systems and Digital Signal Processing, Prentice-Hall,
Englewood Cliffs, N.J., 1985.

76

BIBLIOGRAPHY

Hu, Chenming, and Richard M. White, Solar Cells, From Basics 1o Advanced Sys-
tems, McGraw-Hill Book Co., New York, N.Y., 1983,

Jet Propulsion Laboratory, Solar Cell Arrqy Design Handbook, Vol.2, NASA, Jet
Propulsion Laboratory, Pasadena, Ca., Publication SP 43-38 Vol.2, October 1976.

Purdam, Jack, C Progranuming Guide, Que Corporation, Indianapolis, In., 1985.

Sedra, Adel S., and Kenneth C. Smith, Microelectronic Circuits, The Dryden Press,
Saunders College Publishing, New York, N.Y., 1982,

Stone, Harold S., Microcomputer Interfacing, Addison-Weslev Publishing Co.,
Reading. Mass., 1982.

Taub, Herbert, Digital Circuits and Microprocessors, McGraw-Hill Book Co., New
York, N.Y., 1982.

77

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

Professor S. Michael

Code 62Mi

Naval Postgraduate School
Monterey, CA 93943

Professor R. Panholzer
Code 62Pz

Naval Postgraduate School
Monterey, CA 93943

Professor O. Heinz

Code 61Hz

Naval Postgraduate School
Monterey, CA 93943

Professor K. Kartchner
Code 56Kn

Naval Postgraduate School
Monterev, CA 93943

Superintendent

Code 39

Naval Postgraduate School
Monterey, CA 93943

Professor J. Powers
Chairman, Code 62
Department of Electrical
and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943

Department of the Navy

Commander Space and Naval Warfare
Svstems Command, PDW 106-483
Attn: Ledr. R, Harding

Washington, D.C. 20363-5100

78

No. Copies
2

28]

o

|

VT

10.

1.

13.

14.

—
N

Lt. Robert R. Oxborrow

Tactical Electronic Warfare Squadron 129
Naval Air Station Whidbev Island

Oak Harbor, WA 98278-6100

Navy Space Svstem Division
Chief of Naval Operations (OP-943)
Washington, D.C. 20305-2000

Commander, United States Space Command
Aun: Technical Librarv
Peterson AFB, CO 80914

Commander, Naval Space Command
Attn: Code N3
Dahlgren, VA 22448

National Aeronautics and Space Administration
Technical Library

NASA Headquarters

600 Independence Ave.

Washington, D.C. 20546

Naval Research Laboratory

Condensed Matter and Radiation Science Division
(Code 4612)

Mr. Richard L. Statler

Washington, D.C. 20375-5000

79

